BackgroundDeep inspiration breath hold (DIBH) reduces heart and left anterior descending artery (LAD) dose during left-sided breast radiation therapy (RT); however there is limited information about which patients derive the most benefit from DIBH. The primary objective of this study was to determine which patients benefit the most from DIBH by comparing percent reduction in mean cardiac dose conferred by DIBH for patients treated with whole breast RT ± boost (WBRT) versus those receiving breast/chest wall plus regional nodal irradiation, including internal mammary chain (IMC) nodes (B/CWRT + RNI) using a modified wide tangent technique. A secondary objective was to determine if DIBH was required to meet a proposed heart dose constraint of Dmean < 4 Gy in these two cohorts.MethodsTwenty consecutive patients underwent CT simulation both free breathing (FB) and DIBH. Patients were grouped into two cohorts: WBRT (n = 11) and B/CWRT + RNI (n = 9). 3D-conformal plans were developed and FB was compared to DIBH for each cohort using Wilcoxon signed-rank tests for continuous variables and McNemar’s test for discrete variables. The percent relative reduction conferred by DIBH in mean heart and LAD dose, as well as lung V20 were compared between the two cohorts using Wilcox rank-sum testing. The significance level was set at 0.05 with Bonferroni correction for multiple testing.ResultsAll patients had comparable target coverage on DIBH and FB. DIBH statistically significantly reduced mean heart and LAD dose for both cohorts. Percent reduction in mean heart and LAD dose with DIBH was significantly larger in the B/CWRT + RNI cohort compared to WBRT group (relative reduction in mean heart and LAD dose: 55.9 % and 72.1 % versus 29.2 % and 43.5 %, p < 0.02). All patients in the WBRT group and five patients (56 %) in the B/CWBRT + RNI group met heart Dmean <4 Gy with FB. All patients met this constraint with DIBH.ConclusionsAll patients receiving WBRT met Dmean Heart < 4 Gy on FB, while only slightly over half of patients receiving B/CWRT + RNI were able to meet this constraint in FB. DIBH allowed a greater reduction in mean heart and LAD dose in patients receiving B/CWRT + RNI, including IMC nodes than patients receiving WBRT. These findings suggest greatest benefit from DIBH treatment for patients receiving regional nodal irradiation.
A low-resource visually monitored deep inspiration breath-hold (VM-DIBH) technique was successfully implemented in our clinic to reduce cardiac dose in left-sided breast radiotherapy. In this study, we retrospectively characterized the chest wall and heart positioning accuracy of VM-DIBH using cine portal images from 42 patients. Central chest wall position from field edge and in-field maximum heart distance (MHD) were manually measured on cine images and compared to the planned positions based on the digitally reconstructed radiographs (DRRs). An in-house program was designed to measure left anterior descending artery (LAD) and chest wall separation on the planning DIBH CT scan with respect to breathhold level (BHL) during simulation to determine a minimum BHL for VM-DIBH eligibility. Systematic and random setup uncertainties of 3.0 mm and 2.6 mm, respectively, were found for VM-DIBH treatment from the chest wall measurements. Intrabeam breath-hold stability was found to be good, with over 96% of delivered fields within 3 mm. Average treatment MHD was significantly larger for those patients where some of the heart was planned in the field compared to patients whose heart was completely shielded in the plan (p < 0.001). No evidence for a minimum BHL was found, suggesting that all patients who can tolerate DIBH may yield a benefit from it. PACS number(s): 87.53. Jw, 87.53.Kn,
In this work, we develop a total body irradiation technique that utilizes arc delivery, a buildup spoiler, and inverse optimized multileaf collimator (MLC) motion to shield organs at risk. The current treatment beam model is verified to confirm its applicability at extended source‐to‐surface distance (SSD). The delivery involves 7–8 volumetric modulated arc therapy arcs delivered to the patient in the supine and prone positions. The patient is positioned at a 90° couch angle on a custom bed with a 1 cm acrylic spoiler to increase surface dose. Single‐step optimization using a patient CT scan provides enhanced dose homogeneity and limits organ at risk dose. Dosimetric data of 109 TBI patients treated with this technique is presented along with the clinical workflow. Treatment planning system (TPS) verification measurements were performed at an extended SSD of 175 cm. Measurements included: a 4‐point absolute depth‐dose curve, profiles at 1.5, 5, and 10 cm depth, absolute point‐dose measurements of an treatment field, 2D Gafchromic® films at four locations, and measurements of surface dose at multiple locations of a Alderson phantom. The results of the patient DVH parameters were: Body‐5 mm D98 95.3 ± 1.5%, Body‐5 mm D2 114.0 ± 3.6%, MLD 102.8 ± 2.1%. Differences between measured and calculated absolute depth‐dose values were all <2%. Profiles at extended SSD had a maximum point difference of 1.3%. Gamma pass rates of 2D films were greater than 90% at 5%/1 mm. Surface dose measurements with film confirmed surface dose values of >90% of the prescription dose. In conclusion, the inverse optimized delivery method presented in the paper has been used to deliver homogenous dose to over 100 patients. The method provides superior patient comfort utilizing a commercial TPS. In addition, the ability to easily shield organs at risk is available through the use of MLCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.