The Paris Agreement-which is aimed at holding global warming well below 2 °C while pursuing efforts to limit it below 1.5 °C-has initiated a bottom-up process of iteratively updating nationally determined contributions to reach these longterm goals. Achieving these goals implies a tight limit on cumulative net CO 2 emissions, of which residual CO 2 emissions from fossil fuels are the greatest impediment. Here, using an ensemble of seven integrated assessment models (IAMs), we explore the determinants of these residual emissions, focusing on sector-level contributions. Even when strengthened pre-2030 mitigation action is combined with very stringent long-term policies, cumulative residual CO 2 emissions from fossil fuels remain at 850-1,150 GtCO 2 during 2016-2100, despite carbon prices of US$130-420 per tCO 2 by 2030. Thus, 640-950 GtCO 2 removal is required for a likely chance of limiting end-of-century warming to 1.5 °C. In the absence of strengthened pre-2030 pledges, long-term CO 2 commitments are increased by 160-330 GtCO 2 , further jeopardizing achievement of the 1.5 °C goal and increasing dependence on CO 2 removal.
This study gives a synthesis of a model comparison assessing the technological feasibility and economic consequences of achieving greenhouse gas concentration targets that are sufficiently low to keep the increase in global mean temperature below 2 degrees Celsius above pre-industrial levels. All five global energy-environment-economy models show that achieving low greenhouse gas concentration targets is technically feasible and economically viable. The ranking of the importance of individual technology options is robust across models. For the lowest stabilization target (400 ppm CO 2 eq), the use of bio-energy in combination with CCS plays a crucial role, and biomass potential dominates the cost of reaching this target. Without CCS or the considerable extension of renewables the 400 ppm CO 2 eq target is not achievable. Across the models, estimated aggregate costs up to 2100 are below 0.8% global GDP for 550 ppm CO 2 eq stabilization and below 2.5% for the 400 ppm CO 2 eq pathway.
We present an overview of results from 11 integrated assessment models (IAMs) that participated in the 33 rd study of the Stanford Energy Modeling Forum (EMF-33) on the viability of large-scale deployment of bioenergy for achieving long-run climate goals. The study explores future bioenergy use across models under harmonized scenarios for future
International audienceThis study explores a situation of staged accession to a global climate policy regime from the current situation of regionally fragmented and moderate climate action. The analysis is based on scenarios in which a front runner coalition - the EU or the EU and China - embarks on immediate ambitious climate action while the rest of the world makes a transition to a global climate regime between 2030 and 2050. We assume that the ensuing regime involves strong mitigation efforts but does not require late joiners to compensate for their initially higher emissions. Thus, climate targets are relaxed, and although staged accession can achieve significant reductions of global warming, the resulting climate outcome is unlikely to be consistent with the goal of limiting global warming to 2 degrees. The addition of China to the front runner coalition can reduce pre-2050 excess emissions by 20-30%, increasing the likelihood of staying below 2 degrees. Not accounting for potential co-benefits, the cost of front runner action is found to be lower for the EU than for China. Regions that delay their accession to the climate regime face a trade-off between reduced short term costs and higher transitional requirements due to larger carbon lock-ins and more rapidly increasing carbon prices during the accession period
Local air quality co-benefits can provide complementary support for ambitious climate action and can enable progress on related Sustainable Development Goals. Here we show that the transformation of the energy system implied by the emission reduction pledges brought forward in the context of the Paris Agreement on climate change (Nationally Determined Contributions or NDCs) substantially reduces local air pollution across the globe. The NDCs could avoid between 71 and 99 thousand premature deaths annually in 2030 compared to a reference case, depending on the stringency of direct air pollution controls. A more ambitious 2 °C-compatible pathway raises the number of avoided premature deaths from air pollution to 178–346 thousand annually in 2030, and up to 0.7–1.5 million in the year 2050. Air quality co-benefits on morbidity, mortality, and agriculture could globally offset the costs of climate policy. An integrated policy perspective is needed to maximise benefits for climate and health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.