SUMMARY Alzheimer's disease (AD) results in cognitive decline and altered network activity, but the mechanisms are unknown. To identify such mechanisms, we studied human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Electroencephalographic recordings in hAPP mice revealed spontaneous epileptiform discharges, indicating network hypersynchrony, primarily during reduced gamma oscillatory activity. Because this oscillatory rhythm is generated by inhibitory parvalbumin (PV) cells, network dysfunction in hAPP mice might arise from impaired PV cells. Supporting this hypothesis, hAPP mice and AD patients had decreased levels of the interneuron-specific and PV cell–predominant voltage-gated sodium channel subunit Nav1.1. Restoring Nav1.1 levels in hAPP mice by Nav1.1-BAC expression increased inhibitory synaptic activity and gamma oscillations and reduced hypersynchrony, memory deficits, and premature mortality. We conclude that reduced Nav1.1 levels and PV cell dysfunction critically contribute to abnormalities in oscillatory rhythms, network synchrony, and memory in hAPP mice and possibly in AD.
SUMMARYThe nucleus is a critical subcellular compartment for the pathogenesis of polyglutamine disorders, including Huntington’s disease (HD). Recent studies suggest the first 17-amino-acid domain (N17) of mutant Huntingtin (mHTT) mediates its nuclear exclusion in cultured cells. Here, we test whether N17 could be a molecular determinant of nuclear mHTT pathogenesis in vivo. BAC transgenic mice expressing mHTT lacking the N17 domain (BACHD-ΔN17) show dramatically accelerated mHTT pathology exclusively in the nucleus, which is associated with HD-like transcriptionopathy. Interestingly, BACHD-ΔN17 mice manifest more overt disease-like phenotypes than the original BACHD mice, including body weight loss, movement deficits, robust striatal neuronal loss, and neuroinflammation. Mechanistically, N17 is necessary for nuclear exclusion of small mHTT fragments that are part of nuclear pathology in HD. Together, our study suggests that N17 modifies nuclear pathogenesis and disease severity in HD mice by regulating subcellular localization of known nuclear pathogenic mHTT species.
Adverse events need to be quickly evaluated and memorized, yet how these processes are coordinated is poorly understood. We discovered a large population of excitatory neurons in mouse median raphe region (MRR) expressing vesicular glutamate transporter 2 (vGluT2) that received inputs from several negative experience–related brain centers, projected to the main aversion centers, and activated the septohippocampal system pivotal for learning of adverse events. These neurons were selectively activated by aversive but not rewarding stimuli. Their stimulation induced place aversion, aggression, depression-related anhedonia, and suppression of reward-seeking behavior and memory acquisition–promoting hippocampal theta oscillations. By contrast, their suppression impaired both contextual and cued fear memory formation. These results suggest that MRR vGluT2 neurons are crucial for the acquisition of negative experiences and may play a central role in depression-related mood disorders.
SummaryAnimals build a model of their surroundings on the basis of information gathered during exploration. Rearing on the hindlimbs changes the vantage point of the animal, increasing the sampled area of the environment. This environmental knowledge is suggested to be integrated into a cognitive map stored by the hippocampus. Previous studies have found that damage to the hippocampus impairs rearing. Here, we characterize the operational state of the hippocampus during rearing episodes. We observe an increase of theta frequency paralleled by a sink in the dentate gyrus and a prominent theta-modulated fast gamma transient in the middle molecular layer. On the descending phase of rearing, a decrease of theta power is detected. Place cells stop firing during rearing, while a different subset of putative pyramidal cells is activated. Our results suggest that the hippocampus switches to a different operational state during rearing, possibly to update spatial representation with information from distant sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.