We present a method that estimates in real-time and under challenging conditions the 3D pose of a known object. Our method relies only on grayscale images since depth cameras fail on metallic objects; it can handle poorly textured objects, and cluttered, changing environments; the pose it predicts degrades gracefully in presence of large occlusions. As a result, by contrast with the state-of-the-art, our method is suitable for practical Augmented Reality applications even in industrial environments. To be robust to occlusions, we first learn to detect some parts of the target object. Our key idea is to then predict the 3D pose of each part in the form of the 2D projections of a few control points. The advantages of this representation is three-fold: We can predict the 3D pose of the object even when only one part is visible; when several parts are visible, we can combine them easily to compute a better pose of the object; the 3D pose we obtain is usually very accurate, even when only few parts are visible.
We present an algorithm for estimating the pose of a rigid object in real-time under challenging conditions. Our method effectively handles poorly textured objects in cluttered, changing environments, even when their appearance is corrupted by large occlusions, and it relies on grayscale images to handle metallic environments on which depth cameras would fail. As a result, our method is suitable for practical Augmented Reality applications including industrial environments. At the core of our approach is a novel representation for the 3D pose of object parts: We predict the 3D pose of each part in the form of the 2D projections of a few control points. The advantages of this representation is three-fold: We can predict the 3D pose of the object even when only one part is visible; when several parts are visible, we can easily combine them to compute a better pose of the object; the 3D pose we obtain is usually very accurate, even when only few parts are visible. We show how to use this representation in a robust 3D tracking framework. In addition to extensive comparisons with the state-of-the-art, we demonstrate our method on a practical Augmented Reality application for maintenance assistance in the ATLAS particle detector at CERN.
We introduce a method that can register challenging images from specular and poorly textured 3D environments, on which previous approaches fail. We assume that a small set of reference images of the environment and a partial 3D model are available. Like previous approaches, we register the input images by aligning them with one of the reference images using the 3D information. However, these approaches typically rely on the pixel intensities for the alignment, which is prone to fail in presence of specularities or in absence of texture. Our main contribution is an efficient novel local descriptor that we use to describe each image location. We show that we can rely on this descriptor in place of the intensities to significantly improve the alignment robustness at a minor increase of the computational cost, and we analyze the reasons behind the success of our descriptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.