Ellagic acid (EA) has demonstrated several biological properties, such as antioxidant, antimicrobial, and enzymatic inhibition. Zein and chitosan (CHI) are natural polymers whose biological potential has also gained attention. Therefore, this paper aimed to evaluate the antimicrobial, antioxidant, anticollagenase, and antielastase properties of EA, zein, and chitosan isolated or in combination. The microdilution method was used to assess the minimum inhibitory and bactericide concentrations. The antioxidant activity was determined using the 2,2-diphenyl-1-picryl-hydrazila free radical scavenging method. The anticollagenase and antielastase activities were evaluated by specific colorimetric tests. EA has shown inhibitory activity against Staphylococcus aureus and Pseudomonas aeruginosa together with an antioxidant IC 50 of 0.079 mg/mL. EA also showed significant collagenase and elastase inhibition. Zein has shown antimicrobial and antioxidant activities itself and enhanced sinergically the antioxidant activity and the antimicrobial activity against P. aeruginosa when combined with EA. CHI increased sinergically the inhibitory activity of EA against both bacterial strains, while showed itself an acceptable antimicrobial activity. 1 H saturation transfer-difference nuclear magnetic resonance experiment confirmed the formation of a complex between EA and zein that could be related with the improvement on its biological performance over the individual compounds, while no chemical interaction was detected between CHI and EA.Practical Application: The results reinforce the potential of ellagic acid in combination with zein and/or chitosan as an antimicrobial, antienzimatic, and antioxidant agent. Those findings reinforce the use of these substances, protecting this bioactive from degradation and/or improving the functional characteristics and biopharmaceutical properties.
5-Fluorouracil (5-FU) is an antimetabolite drug used for over 70 years as first-line chemotherapy to treat various types of cancer, such as head, neck, breast and colorectal cancer. 5-FU acts mainly by inhibiting thymidylate synthase, thereby interfering with deoxyribonucleic acid (DNA) replication or by 5-FU incorporating into DNA, causing damage to the sequence of nucleotides. Being analogous to uracil, 5-FU enters cells using the same transport mechanism, where a is converted into active metabolites such as fluorouridine triphosphate (FUTP), fluorodeoxyuridine monophosphate (FdUMP), and fluorodeoxyuridine triphosphate (FdUTP). Currently, there are several nanodelivery systems being developed and evaluated at the preclinical level to overcome existing limitations to 5-FU chemotherapy, including liposomes, polymeric nanoparticles, polymeric micelles, nanoemulsions, mesoporous silica nanoparticles, and solid lipid nanoparticles. Therefore, it is essential to choose and develop suitable analytical methods for the quantification of 5-FU and its metabolites (5-fluorouridine and 5-fluoro-2-deoxyuridine) in pharmaceutical and biological samples. Among the analytical techniques, chromatographic methods are commonly the most used for the quantification of 5-FU from different matrices. However, other analytical methods have also been developed for the determination of 5-FU, such as electrochemical methods, a sensitive, selective, and precise technique, in addition to having a reduced cost. Here, we first review the physicochemical properties, mechanism of action, and advances in 5-FU nanodelivery systems. Next, we summarize the current progress of other chromatographic methods described to determine 5-FU. Lastly, we discuss the advantages of electrochemical methods for the identification and quantification of 5-FU and its metabolites in pharmaceutical and biological samples.
Temozolomide (TMZ) is an imidazotetrazine prodrug used to treat glioblastoma multiforme. Its physicochemical prop-erties and small size confer the ability to cross the blood-brain barrier. The antitumor activity depends on pH-dependent hydrolysis of the methyldiazonium cation, which is capable of methylating purine bases (O6-guanine; N7-guanine, and N3-adenine) and causing DNA damage and cell death. TMZ is more stable in acidic media (pH ≤ 5.0) than in basic media (pH ≥ 7.0) due to the protonated form that minimizes the catalytic process. Because of this, TMZ has high oral bioavailability, but it has a half-life of 1.8 h and low brain distribution (17.8%), requiring a repeated dos-ing regimen that limits its efficacy and increases adverse events. Drug delivery Nanosystems (DDNs) improve the phys-icochemical properties of TMZ and may provide controlled and targeted delivery. Therefore, DDNs can increase the efficacy and safety of TMZ. In this context, to ensure the efficiency of DDNs, analytical methods are used to evaluate TMZ pharmacokinetic parameters, encapsulation efficiency, and the release profile of DDNs. Among the methods, high-performance liquid chromatography is the most used due to its detection sensitivity in complex matrices such as tissues and plasma. Micellar electrokinetic chromatography features fast analysis and no sample pretreatment. Spec-trophotometric methods are still used to determine encapsulation efficiency due to their low cost, despite their low sen-sitivity. This review summarizes the physicochemical and pharmacological properties of free TMZ and TMZ-loaded DDNs. In addition, this review addresses the main analytical methods employed to characterize TMZ in different ma-trices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.