Pre-school age children account for 10%–20% of the 2 billion people worldwide who are infected with soil-transmitted helminths (STHs): Ascaris lumbricoides (roundworm), Trichuris trichiura (whipworm), and Ancylostoma duodenale/Necator americanus (hookworms). Through a systematic review of the published literature and using information collated at World Health Organization headquarters, this paper summarizes the available evidence to support the recommendation that pre-school children should be included in regular deworming programmes. The first section describes the burden of STH disease in this age group, followed by a summary of how infection impacts iron status, growth, vitamin A status, and cognitive development and how STHs may exacerbate other high mortality infections. The second section explores the safety of the drugs themselves, given alone or co-administered, drug efficacy, and the importance of safe administration. The third section provides country-based evidence to demonstrate improved health outcomes after STH treatment. The final section provides country experiences in scaling up coverage of pre-school children by using other large scale public health interventions, including vitamin A programmes, immunization campaigns, and Child Health days. The paper concludes with a number of open research questions and a summary of some of the operational challenges that still need to be addressed.
Strongyloides stercoralis infections have a worldwide distribution with a global burden in terms of prevalence and morbidity that is largely ignored. A public health response against soil-transmitted helminth (STH) infections should broaden the strategy to include S. stercoralis and overcome the epidemiological, diagnostic, and therapeutic challenges that this parasite poses in comparison to Ascaris lumbricoides, Trichuris trichiura, and hookworms. The relatively poor sensitivity of single stool evaluations, which is further lowered when quantitative techniques aimed at detecting eggs are used, also complicates morbidity evaluations and adequate drug efficacy measurements, since S. stercoralis is eliminated in stools in a larval stage. Specific stool techniques for the detection of larvae of S. stercoralis, like Baermann's and Koga's agar plate, despite superiority over direct techniques are still suboptimal. New serologies using recombinant antigens and molecular-based techniques offer new hopes in those areas. The use of ivermectin rather than benzimidazoles for its treatment and the need to have curative regimens rather than lowering the parasite burden are also unique for S. stercoralis in comparison to the other STH due to its life cycle, which allows reproduction and amplification of the worm burden within the human host. The potential impact on STH of the benzimidazoles/ivermectin combinations, already used for control/elimination of lymphatic filariasis, should be further evaluated in public health settings. While waiting for more effective single-dose drug regimens and new sensitive diagnostics, the evidence and the tools already available warrant the planning of a common platform for STH and S. stercoralis control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.