The objective of this work was to evaluate the growth of sugar-apple seedlings under irrigation management with saline water in a substrate with soil amendment. Treatments were obtained from the arrangement between polymer doses (0, 0.2, 0.6, 1.0 and 1.2 g dm-3) and levels of irrigation water electrical conductivity (0.3, 1.1, 2.7, 4.3 and 5.0 dS m-1), associated with irrigation frequencies (daily and every alternate day), and two additional treatments to evaluate container volume (1.30 and 0.75 dm3), using a randomized complete block design, with four replicates. At 120 days after sowing, the variables substrate salinity, stem diameter, plant height, number of leaves and Dickson quality index were determined. Data were submitted to analyses of variance, regression and contrast. Substrate salinity increased with the increase in irrigation water electrical conductivity and polymer doses. Growth and quality of the seedlings were reduced with increasing irrigation water salinity, and highest values of the variables were obtained in seedlings under daily irrigation. Container with larger volume led to higher growth. The use of hydrated polymer at the adopted levels had no effect on growth and quality of seedlings, requiring further studies. To produce sugar-apple seedlings with better quality, irrigation frequency should be daily and water electrical conductivity should be lower than 2 dS m-1.
In plants sensitive to salinity, such as passion fruit, irrigation with saline water can cause physiological disturbances and reduce fruit production, necessitating the use of cultural practices that mitigate saline stress. The objective of this study was to evaluate the effects of water salinity, pit coating with high-strength polyethylene film, and calcium fertilization on the physiological and productive aspects of passion fruit ‘BRS Gigante Amarelo’. The treatments were arranged in split plot in the scheme 2WS × (2LP × 5DC), corresponding to water salinity (0.3 and 4.0 dS m-1) as the main plot, side coating of pits (without and with) doses of calcium (0; 30; 60; 90 and 120 kg ha-1). During the flowering phase, we evaluated leaf chlorophyll indices, fluorescence kinetics, and gas exchange. The increase in calcium doses up to 60 kg ha-1 increased leaf chlorophyll and quantum efficiency. The stomata did not restrict gas exchange, but salinity resulted in reduced net photosynthesis and plant production. The lateral coating of the pits intensified the reduction in salinity-promoted production, while calcium mitigated the effects of the salts. Entisol cultivated with passion fruit should not be irrigated with saline water of 4.0 dS m-1; lateral pit coating is not advised. In an Entisol with an initial calcium level of 1.92 cmolc dm-3, the recommended application dose is 60 kg ha-1 for passion fruit cultivation.
Application of saline water causes water and salt stress, changing the behavior of the plants. The aim of this work was to evaluate the accumulation and allocation of biomass in sugar-apple seedlings under frequencies of irrigation with saline water in a substrate with soil conditioner, as well as the effect of container volume. The treatments were obtained from the arrangement between polymer doses (0, 0.2, 0.6, 1.0 and 1.2 g dm-3) and electrical conductivity of irrigation water (0.3; 1.1; 2.7; 4.3 and 5.0 dS m-1), associated with irrigation frequencies (daily and alternated), plus two additional treatments to evaluate container volume (0.75 and 1.30 dm3), distributed in blocks. The evaluations were performed at 120 days after sowing. Irrigation frequency affected the variables, and the highest values were obtained with daily irrigation, except for root/shoot dry matter ratio. Increase in the electrical conductivity of the irrigation water inhibited biomass accumulation. The effect of the container was significant for daily irrigation; higher volume led to higher root, shoot and total biomass. Polymer doses did not affect the biomass of the seedlings. Daily irrigation with non-saline water favored biomass production in sugar-apple seedlings. In the production of sugar-apple seedlings, water with electrical conductivity below 1.0 dS m-1 should be used on a daily frequency of application in 1.30 dm3 containers.
Nutritional status is an important tool in salinity management, because salt stress interferes with both the absorption and the assimilation of mineral nutrients by plants. The objectives of this experiment were to evaluate the effects of water salinity, lateral protection of pits against water losses and calcium doses on the leaf concentration of macronutrients and sodium of yellow passion fruit cv. BRS GA1. The treatments were arranged in a randomized block design in split plots in a 2 × (2 × 5) factorial scheme, corresponding to water salinity (0.3 and 4.0 dS m-1) in the main plot, and the combinations between lateral protection of pits (without and with) and calcium doses (0, 30, 60, 90 and 120 kg ha-1) in the subplots. Leaf concentrations of macronutrients and sodium were determined at the phenological stage of full flowering. Irrigation of yellow passion fruit with 4.0 dS m-1 water decreased the leaf concentrations of macronutrients. The lining of the pits compromised macronutrient concentration in the plants. Calcium fertilization is recommended for yellow passion fruit cultivated in Entisol with low calcium concentration at the dose of 60 kg ha-1, because it raises nitrogen and calcium concentrations in plants irrigated with non-saline water and magnesium and sulfur concentrations in those irrigated with saline water. Calcium attenuates salt stress because it promotes the accumulation of macronutrients in yellow passion fruit under saline conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.