In Helicobacter pylori, the contribution of efflux proteins to antibiotic resistance is not well established. As translocases that act in parallel may have overlapping substrate specificities, the loss of function of one such translocase may be compensated for by that of another translocase with no effect on susceptibilities to antibiotics. The genome of H. pylori 26695 was assessed for the presence of putative translocases and outer membrane efflux or TolC-like proteins which could interact to form efflux systems involved in drug resistance. Twenty-seven translocases were identified, of which HP1184 was the sole representative of the multidrug and toxic compound extrusion family of translocases and which could thus have a unique substrate specificity. In addition, four TolC-like proteins (HP0605, HP0971, HP1327, and HP1489) were identified. Thus, it is feasible that inactivation of a TolC-like protein would affect the functions of multiple translocases. We aimed to determine whether efflux systems contribute to antimicrobial susceptibility by evaluation of the susceptibility profiles of an HP1184-knockout mutant, four mutants in which one of the four TolC homologs was inactivated, as well as a mutant in which both HP0605 and HP0971 were inactivated. The HP1184-and HP1489-knockout mutants both showed increased susceptibilities to ethidium bromide, while the HP0605-knockout mutant exhibited increased susceptibilities to novobiocin and sodium deoxycholate. The HP0605 and HP0971 doubleknockout mutant was also more susceptible to metronidazole, in addition to being susceptible to novobiocin and sodium deoxycholate. Thus, active efflux is an eminent means of resistance to antimicrobials in H. pylori and resembles the situation in other bacteria.
f Several genetic markers have been described for discriminating Leishmania species. In most reported cases, one or a few polymorphisms are the basis of species identification, and the methods were validated on a limited number of strains from a particular geographical region. Therefore, most techniques may underestimate the global intraspecies variability and are applicable only in certain areas. In addition, interlaboratory standardization is mostly absent, complicating comparisons among different studies. Here, we compared species typing results from all sequence polymorphisms found in four popular markers that can be applied directly on clinical samples: the miniexon or spliced leader, the internal transcribed spacer of the ribosomal DNA array, the 7SL RNA gene, and the heat shock protein 70 gene. Clustering was evaluated among 74 Leishmania strains, selected to represent a wide geographic distribution and genetic variability of the medically relevant species of the genus. Results were compared with a multilocus sequence typing (MLST) approach using 7 single-copy household genes and with multilocus enzyme electrophoresis (MLEE), still considered the gold standard by some. We show that strain groupings are highly congruent across the four different single-locus markers, MLST, and MLEE. Overall, the heat shock protein 70 gene and the miniexon presented the best resolutions for separating medically relevant species. As gene sequence analysis is validated here on a global scale, it is advocated as the method of choice for use in genetic, clinical, and epidemiological studies and for managing patients with unknown origins of infection, especially in Western infectious disease clinics dealing with imported leishmaniasis.T he parasitic protozoa of the genus Leishmania cause a spectrum of diseases in humans, collectively called the leishmaniases. In its most benign form, referred to as cutaneous leishmaniasis, the disease manifests itself as a localized skin ulcer at the site of infection by the bite of a female infectious sandfly. Sometimes the parasites spread to other parts of the body, causing secondary lesions. In more severe cases, when the mucosa is infected, a condition known as mucosal leishmaniasis, the disease leads to disfiguring lesions of the nose and mouth. Finally, when the parasite colonizes internal organs such as the spleen, liver, and bone marrow, a condition referred to as visceral leishmaniasis, the disease becomes lethal. As the manifestation of disease depends, to a large extent, on the infecting species, so do the treatment options (1, 2).According to a recent estimate (3), leishmaniasis is endemic in 98 countries and 3 territories. Besides the indigenous population being at risk of infection, many active transmission areas are frequently visited by tourists, military personnel, expatriates, and people visiting friends and relatives. They can potentially import leishmaniasis into their home countries, and management of such cases calls for a globally applicable reliable species typing approa...
BackgroundBlastocystis sp. are among the most commonly observed intestinal parasites in routine clinical parasitology. Blastocystis in humans consists of at least 9 genetic subtypes. Different subtypes of Blastocystis may be associated with differences in pathogenicity and symptomatology.MethodsAdvanced microscopy on two samples and sequence-confirmed PCR on a third sample from the same individual were used for Blastocystis diagnosis and subtype analyses on routine clinical samples in a university hospital.ResultsWith a combined gold standard of sequence-confirmed PCR and positive advanced microscopy, 107 out of 442 (24.2%) patients were diagnosed with Blastocystis. infection, which is a high frequency of detection in comparison to previous reports from industrialized countries. The sensitivity of microscopy and sequence-confirmed PCR was 99.1% (106/107) and 96.3% (103/107), respectively.Among 103 typable samples, subtype 3 was most abundant (n = 43, 42%), followed by subtypes 1 and 2 (both n = 23, 22%), subtype 4 (n = 12, 12%), and single samples with subtypes 6 (1%) and subtype 7 (1%). The prevalence of Blastocystis infection was 38% in patients from the Department of Tropical Medicine and 18% in patients from other departments.ConclusionsA high prevalence of Blastocystis infection was found with both advanced microscopy and sequence-confirmed PCR in our patient population. Most cases were caused by subtypes ST1, ST2, ST3 and ST4. A significantly higher prevalence was found among patients with a history of recent travel to tropical countries.
BackgroundLeishmaniasis is increasingly reported among travellers. Leishmania species vary in sensitivity to available therapies. Fast and reliable molecular techniques have made species-directed treatment feasible. Many treatment trials have been designed poorly, thus developing evidence-based guidelines for species-directed treatment is difficult. Published guidelines on leishmaniasis in travellers do not aim to be comprehensive or do not quantify overall treatment success for available therapies. We aimed at providing comprehensive species-directed treatment guidelines.Methodology/Principal FindingsEnglish literature was searched using PubMed. Trials and observational studies were included if all cases were parasitologically confirmed, the Leishmania species was known, clear clinical end-points and time points for evaluation of treatment success were defined, duration of follow-up was adequate and loss to follow-up was acceptable. The proportion of successful treatment responses was pooled using mixed effects methods to estimate the efficacy of specific therapies. Final ranking of treatment options was done by an expert panel based on pooled efficacy estimates and practical considerations. 168 studies were included, with 287 treatment arms. Based on Leishmania species, symptoms and geography, 25 clinical categories were defined and therapy options ranked. In 12/25 categories, proposed treatment agreed with highest efficacy data from literature. For 5/25 categories no literature was found, and in 8/25 categories treatment advise differed from literature evidence. For uncomplicated cutaneous leishmaniasis, combination of intralesional antimony with cryotherapy is advised, except for L. guyanensis and L. braziliensis infections, for which systemic treatment is preferred. Treatment of complicated (muco)cutaneous leishmaniasis differs per species. For visceral leishmaniasis, liposomal amphotericin B is treatment of choice.Conclusions/SignificanceOur study highlights current knowledge about species-directed therapy of leishmaniasis in returning travellers and also demonstrates lack of evidence for treatment of several clinical categories. New data can easily be incorporated in the presented overview. Updates will be of use for clinical decision making and for defining further research.
A transferable plasmid encoding SHV-12 extended-spectrum -lactamase, TEM-116, and aminoglycoside resistance was responsible for two sequential clonal outbreaks of Enterobacter cloacae and Acinetobacter baumannii bacteria. A similar plasmid was present among isolates of four different bacterial species. Recognition of plasmid transfer is crucial for control of outbreaks of multidrug-resistant nosocomial pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.