Background:
Allium sativum L., or garlic, is one of the most studied plants worldwide within the field of traditional medicine. Current interests lie in the potential use of garlic as a preventive measure and adjuvant treatment for viral infections, e.g., SARS-CoV-2. Even though it cannot be presented as a single treatment, its beneficial effects are beyond doubt. The World Health Organization has deemed it an essential part of any balanced diet with immunomodulatory properties.
Objective:
The aim of the study was to review the literature on the effects of garlic compounds and preparations on immunomodulation and viral infection management, with emphasis on SARS-CoV-2.
Method:
Exhaustive literature search has been carried out on electronic databases.
Conclusion:
Garlic is a fundamental part of a well-balanced diet which helps maintain general good health. The reported information regarding garlic’s ability to beneficially modulate inflammation and the immune system is encouraging. Nonetheless, more efforts must be made to understand the actual medicinal properties and mechanisms of action of the compounds found in this plant to inhibit or diminish viral infections, particularly SARS-CoV-2. Based on our findings, we propose a series of innovative strategies to achieve such a challenge in the near future.
In the context of the COVID-19 pandemic, scientists worldwide have been looking for ways to stop it using different approaches. One strategy is to look among drugs that have already proved safe for use in humans and tested for other illnesses. Several components from the virus and the infected cell are the potential therapeutic targets from a molecular perspective. We explain how we implemented a cavity-guided blind molecular docking algorithm into a high-throughput computational pipeline to automatically screen and analyze a large set of drugs over a group of SARS-CoV-2 and cell proteins involved in the infection process. We discuss the need to significantly extend the conformational space sampling to find an accurate target-ligand complex. Our results identify nine drugs with potential multi-target activity against COVID-19 at different stages of the infection and immune system evasion. These results are relevant in understanding the SARS-CoV-2 drug’s molecular mechanisms and further clinical treatment development. The code developed is available on GitHub [https://github.com/tripplab/HTVS].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.