Mitochondria are quantitatively the most important sources of reactive oxygen species (ROS) which are formed as by-products during cellular respiration. ROS generation occurs when single electrons are transferred to molecular oxygen. This leads to a number of different ROS types, among them superoxide. Although most studies focus on ROS generation in the mitochondrial matrix, the intermembrane space (IMS) is also important in this regard. The main scavengers for the detoxification of superoxide in the IMS are Cu, Zn superoxide dismutase (SOD1) and cytochrome-c. Similar to ROS, certain reactive carbonyl species are known for their high reactivity. The consequences are deleterious modifications to essential components compromising cellular functions and contributing to the etiology of severe pathological conditions like cancer, diabetes and neurodegeneration. In this study, we investigated the susceptibility of SOD1 and cytochrome-c to in vitro glycation by the dicarbonyl methylglyoxal (MGO) and the resulting effects on their structure. We utilized experimental techniques like immunodetection of the MGO-mediated modification 5-hydro-5-methylimidazolone, differential scanning calorimetry, fluorescence emission and circular dichroism measurements. We found that glycation of cytochrome-c leads to monomer aggregation, an altered secondary structure (increase in alpha helical content) and slightly more compact folding. In addition to structural changes, glycated cytochrome-c displays an altered thermal unfolding behavior. Subjecting SOD1 to MGO does not influence its secondary structure. However, similar to cytochrome-c, subunit aggregation is observed under denaturating conditions. Furthermore, the appearance of a second peak in the calorimetry diagram indirectly suggests de-metallation of SOD1 when high MGO levels are used. In conclusion, our data demonstrate that MGO has the potential to alter several structural parameters in important proteins of energy metabolism (cytochrome-c) and antioxidant defense (cytochrome-c, SOD1).
Background: Allium sativum L., or garlic, is one of the most studied plants worldwide within the field of traditional medicine. Current interests lie in the potential use of garlic as a preventive measure and adjuvant treatment for viral infections, e.g., SARS-CoV-2. Even though it cannot be presented as a single treatment, its beneficial effects are beyond doubt. The World Health Organization has deemed it an essential part of any balanced diet with immunomodulatory properties. Objective: The aim of the study was to review the literature on the effects of garlic compounds and preparations on immunomodulation and viral infection management, with emphasis on SARS-CoV-2. Method: Exhaustive literature search has been carried out on electronic databases. Conclusion: Garlic is a fundamental part of a well-balanced diet which helps maintain general good health. The reported information regarding garlic’s ability to beneficially modulate inflammation and the immune system is encouraging. Nonetheless, more efforts must be made to understand the actual medicinal properties and mechanisms of action of the compounds found in this plant to inhibit or diminish viral infections, particularly SARS-CoV-2. Based on our findings, we propose a series of innovative strategies to achieve such a challenge in the near future.
In the context of the COVID-19 pandemic, scientists worldwide have been looking for ways to stop it using different approaches. One strategy is to look among drugs that have already proved safe for use in humans and tested for other illnesses. Several components from the virus and the infected cell are the potential therapeutic targets from a molecular perspective. We explain how we implemented a cavity-guided blind molecular docking algorithm into a high-throughput computational pipeline to automatically screen and analyze a large set of drugs over a group of SARS-CoV-2 and cell proteins involved in the infection process. We discuss the need to significantly extend the conformational space sampling to find an accurate target-ligand complex. Our results identify nine drugs with potential multi-target activity against COVID-19 at different stages of the infection and immune system evasion. These results are relevant in understanding the SARS-CoV-2 drug’s molecular mechanisms and further clinical treatment development. The code developed is available on GitHub [https://github.com/tripplab/HTVS].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.