Klebsiella variicola is considered an emerging pathogen in humans and has been described in different environments. K. variicola belongs to Klebsiella pneumoniae complex, which has expanded the taxonomic classification and hindered epidemiological and evolutionary studies. The present work describes the molecular epidemiology of K. variicola based on MultiLocus Sequence Typing (MLST) developed for this purpose. In total, 226 genomes obtained from public data bases and 28 isolates were evaluated, which were mainly obtained from humans, followed by plants, various animals, the environment and insects. A total 166 distinct sequence types (STs) were identified, with 39 STs comprising at least two isolates. The molecular epidemiology of K. variicola showed a global distribution for some STs was observed, and in some cases, isolates obtained from different sources belong to the same ST. Several examples of isolates corresponding to kingdom-crossing bacteria from plants to humans were identified, establishing this as a possible route of transmission. goeBURST analysis identified Clonal Complex 1 (CC1) as the clone with the greatest distribution. Whole-genome sequencing of K. variicola isolates revealed extended-spectrum β-lactamase- and carbapenemase-producing strains with an increase in pathogenicity. MLST of K. variicola is a strong molecular epidemiological tool that allows following the evolution of this bacterial species obtained from different environments.
Basic knowledge of transcriptional regulation is needed to understand the mechanisms governing biological processes, i.e., nitrogen fixation by Rhizobiales bacteria in symbiosis with leguminous plants. The RhizoBindingSites database is a computerassisted framework providing motif-gene-associated conserved sequences potentially implicated in transcriptional regulation in nine symbiotic species. A dyad analysis algorithm was used to deduce motifs in the upstream regulatory region of orthologous genes, and only motifs also located in the gene seed promoter with a p-value of 1e-4 were accepted. A genomic scan analysis of the upstoream sequences with these motifs was performed. These predicted binding sites were categorized according to low, medium and high homology between the matrix and the upstream regulatory sequence. On average, 62.7% of the genes had a motif, accounting for 80.44% of the genes per genome, with 19613 matrices (a matrix is a representation of a motif). The RhizoBindingSites database provides motif and gene information, motif conservation in the order Rhizobiales, matrices, motif logos, regulatory networks constructed from theoretical or experimental data, a criterion for selecting motifs and a guide for users. The RhizoBindingSites database is freely available online at rhizobindingsites.ccg.unam.mx.
The use of colistin in food-producing animals favors the emergence and spread of colistin-resistant strains. Here, we investigated the occurrence and molecular mechanisms of colistin resistance among E. coli isolates from a Mexican piglet farm. A collection of 175 cephalosporin-resistant colonies from swine fecal samples were recovered. The colistin resistance phenotype was identified by rapid polymyxin test and the mcr-type genes were screened by PCR. We assessed the colistin-resistant strains by antimicrobial susceptibility test, pulse-field gel electrophoresis, plasmid profile, and mating experiments. Whole-Genome Sequencing data was used to explore the resistome, virulome, and mobilome of colistin-resistant strains. A total of four colistin-resistant E. coli were identified from the cefotaxime-resistant colonies. All harbored the plasmid-borne mcr-1 gene, which was located on conjugative 170-kb IncHI-2 plasmid co-carrying ESBLs genes. Thus, high antimicrobial resistance rates were observed for several antibiotic families. In the RC2-007 strain, the mcr-1 gene was located as part of a prophage carried on non-conjugative 100-kb-plasmid, which upon being transformed into K. variicola strain increased the polymyxin resistance 2-fold. The genomic analysis showed a broad resistome and virulome. Our findings suggest that colistin resistance followed independent acquisition pathways as clonal and non-genetically related mcr-1-harboring strains were identified. These E. coli isolates represent a reservoir of antibiotic resistance and virulence genes in animals for human consumption which could be potentially propagated into other interfaces.
Acinetobacter baumannii is one the most worrisome nosocomial pathogens, which has long been considered almost mainly as a hospital-associated bacterium. There have been some studies about animal and environmental isolates over the last decade. However, little effort has been made to determine if this pathogen dwells in the grass. Here, we aim to determine the evolutionary relationships and antibiotic resistance of clones of A. baumannii sampled from grass to the major human international clones and animal clones. Two hundred and forty genomes were considered in total from four different sources for this study. Our core and accessory genomic epidemiology analyses showed that grass isolates cluster in seven groups well differentiated from one another and from the major human and animal isolates. Furthermore, we found new sequence types under both multilocus sequence typing schemes: two under the Pasteur scheme and seven for the Oxford scheme. The grass isolates contained fewer antibiotic-resistance genes and were not resistant to the antibiotics tested. Our results demonstrate that these novel clones appear to have limited antibiotic resistance potential. Given our findings, we propose that genomic epidemiology and surveillance of A. baumannii should go beyond the hospital settings and consider the environment in an explicit One Health approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.