In recent years, nanomaterials have been used in the medical-dental field as new alternative antimicrobial agents. Bismuth subsalicylate (BSS) has been used as an antimicrobial agent, but the effect of BSS in the form of nanoparticles (BSS-nano) as a potential antimicrobial agent has not been tested, in specific against bacteria responsible for periodontal disease. The aim of this study was to evaluate the antibacterial effect of BSS-nano against oral anaerobic bacteria and to assess the safety of BSS-nano by evaluating their cytotoxicity in human gingival fibroblast (HGF-1) cells. BSS-nano were synthesized by laser ablation and were previously physico-chemically characterized using in vitro assays. The antibacterial activity was measured using the tetrazolium-based XTT assay, and cytotoxicity was determined using lactate dehydrogenase (LDH) and MTS assays in HGF-1 cells. Transmission electron microscopy of HGF-1 exposed to BSS-nano was also performed. BSS-nano was shown to have a primary size of 4-22 nm and a polygonal shape. Among the tested bacterial strains, those with a greater sensitivity to BSS-nano (highest concentration of 21.7 μg ml) were A. actinomycetemcomitans, C. gingivalis, and P. gingivalis. BSS-nano at a concentration of 60 μg ml showed low cytotoxicity (6%) in HFG-1 cells and was mainly localized intracellularly in acidic vesicles. Our results indicate that the concentration of BSS-nano used as an effective antibacterial agent does not induce cytotoxicity in mammalian cells; thus, BSS-nano can be applied as an antibacterial agent in dental materials or antiseptic solutions.
In recent years, infectious diseases, specifically those that are caused by pathogens, have seen a dramatic proliferation due to resistance to multiple antibiotics, opening the colony by opportunistic pathogens. Nanotechnology and tissue engineering have been applied in the development of new antimicrobial therapies, capable of fighting opportunistic infections. In the medical field, research on antimicrobial properties of metal oxide nanoparticles have emerged to find new antimicrobial agents as an alternative against resistant bacteria. The metal oxides, particularly those formed by transition metals are compounds with electronic properties, and most magnetic phenomena involve this type of oxides. Nanoparticlesbased metal oxide properties such as shape, size, roughness, zeta potential and their large surface area, make oxides ideal candidates to interact with bacteria and able to have an antimicrobial effectiveness. The aim of this chapter is to offer an updated panorama about the relationships between the use of metal oxide nanoparticles in the medical field, with an emphasis on their role as antimicrobial agents and the properties that influence their antimicrobial response. In addition, the mechanism of nano-antimicrobial action is described and the importance of using in vitro test methods, adopted by leading international regulatory agencies, that can be used to determine the antimicrobial activity of the metal oxide nanoparticles.
(1) Dental caries, periodontitis, or peri-implantitis are commensal infections related to oral biofilm former bacteria. Likewise, magnesium oxide nanoparticles (MgO-NPs) were studied to introduce them to the antibacterial properties of a few microorganisms. Considering this, the purpose of the present investigation was to determine the antibacterial properties of MgO-NPs on representative oral strains. (2) Methods: MgO-NPs with a cubic crystal structure were obtained by magnesium hydroxide mechanical activation. After synthesis, the MgO-NPs product was annealed at 800 °C (2 h). The MgO-NPs obtained were tested against ten oral ATCC strains at ten serial concentrations (1:1 20.0–0.039 mg/mL per triplicate) using the micro-broth dilution method to determine the minimal inhibitory concentration (MIC) or minimal bactericidal concentration (MIB). Measures of OD595 were compared against each positive control with a Student’s t-test. Viability was corroborated by colony-forming units. (3) Results: The polycrystalline structure had an average size of 21 nm as determined by X-ray diffraction and transmission electron microscopy (high resolution). Antimicrobial sensitivity was observed in Capnocytophaga gingivalis (MIB/MIC 10–5 mg/mL), Eikenella corrodens (MIB 10 mg/mL), and Streptococcus sanguinis (MIB 20 mg/mL) at high concentrations of the MgO-NPs and at lower concentrations of the MgO-NPs in Actinomyces israelii (MIB 0.039 mg/mL), Fusobacterium nucleatum subsp. nucleatum (MIB/MIC 5–2.5 mg/mL), Porphyromonas gingivalis (MIB 20 mg/mL/MIC 2.5 mg/mL), Prevotella intermedia (MIB 0.625 mg/mL), Staphylococcus aureus (MIC 2.5 mg/mL), Streptococcus mutans (MIB 20 mg/mL/MIC 0.321 mg/mL), and Streptococcus sobrinus (MIB/MIC 5–2.5 mg/mL). (4) Conclusions: The MgO-NPs’ reported antibacterial properties in all oral biofilm strains were evaluated for potential use in dental applications.
Nanoparticles (NPs) of CuBi2O4 with an average size around 25 nm were obtained by a novel and eco-friendly synthesis method. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) reveal that CuBi2O4 NPs possess a tetragonal crystal structure. These NPs were characterised by Raman scattering, ultraviolet-visible (UV-Vis) absorption, photoluminescence (PL), and electron paramagnetic resonance (EPR) spectroscopies. Furthermore, an in vitro study of the antibacterial effect of CuBi2O4 NPs against two bacterial strains, Pseudomonas aeruginosa (ATCC 43636) and Staphylococcus aureus (ATCC 25923), was carried out. The results obtained from the counting of colony-forming units (CFUs) and by the XTT-PMS cell viability assay showed an inhibition of the bacterial growth by 88%–87% for P. aeruginosa and 100% for S. aureus, at 50 mg ml−1 of NPs concentration. The results of this work suggest that these nanoparticles have the potential to be used as antibacterial agents by embedding them into different surfaces or being dispersed in a coating, to prevent the bacterial colonisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.