The tropical Andes are an important natural laboratory to understand speciation in many taxa. Here we examined the evolutionary history of parasites of the Leishmania braziliensis species complex based on whole-genome sequencing of 67 isolates from 47 localities in Peru. We first show the origin of Andean Leishmania as a clade of near-clonal lineages that diverged from admixed Amazonian ancestors, accompanied by a significant reduction in genome diversity and large structural variations implicated in host–parasite interactions. Within the Andean species, patterns of population structure were strongly associated with biogeographical origin. Molecular clock and ecological niche modeling suggested that the history of diversification of the Andean lineages is limited to the Late Pleistocene and intimately associated with habitat contractions driven by climate change. These results suggest that changes in forestation over the past 150,000 y have influenced speciation and diversity of these Neotropical parasites. Second, genome-scale analyses provided evidence of meiotic-like recombination between Andean and Amazonian Leishmania species, resulting in full-genome hybrids. The mitochondrial genome of these hybrids consisted of homogeneous uniparental maxicircles, but minicircles originated from both parental species. We further show that mitochondrial minicircles—but not maxicircles—show a similar evolutionary pattern to the nuclear genome, suggesting that compatibility between nuclear-encoded mitochondrial genes and minicircle-encoded guide RNA genes is essential to maintain efficient respiration. By comparing full nuclear and mitochondrial genome ancestries, our data expand our appreciation on the genetic consequences of diversification and hybridization in parasitic protozoa.
Treatment failures for leishmaniasis with pentavalent antimonials, including meglumine antimonate, are increasingly common in many endemic areas. Imiquimod (Aldara; 3M Pharmaceuticals) is a novel immune response-activating compound, approved by the United States Food and Drug Administration, that is currently used to treat cervical warts and has been shown to activate macrophage killing of Leishmania species. Therefore, an open-label, prospective study was conducted of combined imiquimod plus meglumine antimonate therapy in 12 patients with cutaneous leishmaniasis who had previously not responded to meglumine antimonate therapy. All of the patients responded well to this combination therapy, and 90% were found to be cured at the 6-month follow-up period.
Abstract. The principal agent of mucocutaneous leishmaniasis (MCL) is the South American protozoan parasite Leishmania (Viannia) braziliensis. This organism is generally considered to be clonal, that is, it does not to undergo genetic exchange. Nevertheless, apparent hybrids between several Leishmania species have been reported in the New World and the Old World. When we characterized isolates of Leishmania (Viannia) from a single focus of cutaneous leishmaniasis (CL) and MCL, we found a remarkable phenotypic and genotypic diversity, with 12 zymodemes and 20 microsatellite genotypes. Furthermore, 26 of the 59 isolates were L. braziliensis/L. peruviana phenotypic hybrids that displayed 7 different microsatellite genotypes. A hybrid genotype was the only organism isolated from 4 patients with MCL. Thus hybrids must be included among the potential agents of MCL. Despite the propensity for clonality, hybrids are also an important feature of Leishmania (Viannia) and may give rise to epidemiologically important emergent genotypes.
Malaria transmission from humans to mosquitoes is modulated by human host immune factors. Understanding mechanisms by which the human host response may impair parasite infectivity for mosquitoes has direct implications for the development of transmission-blocking vaccines. We hypothesized that despite a low transmission intensity of malaria in the Peruvian Amazon region of Iquitos, transmission-blocking immunity against Plasmodium vivax might be common, given an unexpectedly high proportion of asymptomatic parasitemic individuals in this region. To test this hypothesis, the ability of symptomatic P. vivax malaria patients to experimentally infect wild-caught outbred Anopheles darlingi mosquitoes was tested using the indirect membrane feeding technique. Only half (52/102) of P. vivax parasitemic patients successfully infected mosquitoes. Transmitters were more likely to have gametocytes (OR 6.35, P = 0.003), high parasitemia (OR 3.79, P = 0.024), and, in terms of basic clinical parameters, a slower pulse rate (mean +/- SD: 82.3 +/- 12.3 versus 88.7 +/- 13.5, P = 0.016) than non-transmitters. Log(10) gametocytemia and log(10) real-time reverse transcriptase Pvs25 PCR quantifying gametocytes were significantly and positively correlated with oocyst counts (correlation coefficient 0.505, R2 = 0.26, P = 0.001). These experiments are the first to establish a system of determining transmission patterns in experimental infection of outbred natural neotropical malaria vectors in the Amazon region. Patients with P. vivax inefficiently infect outbred An. darlingi mosquitoes, raising the possibility that some degree of naturally occurring transmission-blocking immunity is present on a population basis in the Peruvian Amazon, an area of low intensity of malaria transmission.
Abstract. Clinical isolates of Leishmania, from visceral leishmaniasis (VL) cases in Nepal and from cutaneous leishmaniasis (CL) cases in Peru, were cultured using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to type species and strain. Promastigotes from 38 isolates, within eight passages from isolation, were used to infect mouse peritoneal macrophage cultures in vitro, and the amastigote sensitivity to miltefosine was determined. The concentration required to kill 50% of intracellular amastigotes from Nepalese VL isolates, all typed as Leishmania (L.) donovani (N ס 24) from both Sb v responders and nonresponders, ranged from 8.7 to 0.04 g/mL. In contrast, the concentration required to kill 50% intracellular amastigotes from isolates from Peru, typed as L. (V.) and L. (V.) lainsoni (N ס 4) was 3.4 to 1.9 g/mL. This demonstrates a notable difference in the intrinsic sensitivity of Leishmania species to miltefosine in vitro. If this model can be correlated to therapeutic outcome, it may have implications for the interpretation of clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.