Thin-film solar cells based on polycrystalline absorbers have reached very high conversion efficiencies of up to 23-25%. In order to elucidate the limiting factors that need to be overcome for even higher efficiency levels, it is essential to investigate microscopic origins of loss mechanisms in these devices. In the present work, a high efficiency (21% without anti-reflection coating) copper indium gallium diselenide (CIGSe) solar cell is characterized by means of a correlative microscopy approach and corroborated by means of photoluminescence spectroscopy. The values obtained by the experimental characterization are used as input parameters for two-dimensional device simulations, for which a real microstructure was used. It can be shown that electrostatic potential and lifetime fluctuations exhibit no substantial impact on the device performance. In contrast, nonradiative recombination at random grain boundaries can be identified as a significant loss mechanism for CIGSe solar cells, even for devices at a very high performance level.
Thin‐film solar cells based on Cu(In,Ga)Se2 (CIGSe) absorber layers reach conversion efficiencies of above 20%. One key to this success is the incorporation of alkali metals, such as Na and K, into the surface and the volume of the CIGSe thin film. The present work discusses the impact of Na and K on the grain‐boundary (GB) properties in CIGSe thin films, i.e., on the barriers for charge carriers, Φb, and on the recombination velocities at the GBs, sGB. First, the physics connected with these two quantities as well as their impact on the device performance are revised, and then the values for the barrier heights and recombination velocities are provided from the literature. The sGB values are measured by means of a cathodoluminescence analysis of Na‐/K‐free CIGSe layers as well as on CIGSe layers on Mo/sapphire substrates, which are submitted to only NaF or only KF postdeposition treatments. Overall, passivating effects on GBs by neither Na nor K can be confirmed. The GB recombination velocities seem to remain on the same order of magnitude, in average about 103–104 cm s−1, irrespective of whether CIGSe thin films are Na‐/K‐free or Na‐/K‐containing.
In Cu(In,Ga)Se2 (CIGS) thin‐film solar cells, laterally inhomogeneous distributions of point defects may induce electrostatic potential fluctuations and thus reduce the open‐circuit voltage (Voc). In the present work, we investigate possible origins of fluctuating potentials and estimate the amplitude of fluctuations and Voc losses in solar cells with various [Ga] in the CIGS absorber, with different buffer layers and with different durations of an RbF postdeposition treatment (PDT). Electron‐beam‐induced current measurements were employed to study the local difference in the width of the space‐charge region (wSCR). It is shown that the amplitude of fluctuations in the wSCR depends significantly on the choice of buffer system and on the duration of the RbF PDT. In addition, energy‐dispersive X‐ray spectroscopy and cathodoluminescence measurements reveal that band‐gap fluctuations do not have substantial impact on the device performance. Finally, some of the investigated cells were exposed to light soaking, which was found to be a means to reduce the detected electrostatic potential fluctuations and also to increase the effective electron diffusion length in the CIGS absorber for a part of the investigated cells.
Interface recombination at the absorber surface impedes the efficiency of a solar cell with an otherwise excellent absorber. The internal voltage or quasi‐Fermi‐level splitting (qFLs) measures the quality of the absorber. Interface recombination reduces the open‐circuit voltage (VOC) with respect to the qFLs. A facile solution‐based sulfur postdeposition treatment (S‐PDT) is explored to passivate the interface of CuInS2 grown under Cu‐rich conditions, which show excellent qFLs values, but much lower VOCs. The absorbers are treated in S‐containing solutions at 80 °C. Absolute calibrated photoluminescence and current–voltage measurements demonstrate a reduction of the deficit between qFLs and VOC by almost one‐third compared with the untreated device. Temperature dependence of the open‐circuit voltage shows increased activation energy for the dominant recombination path, indicating less interface recombination. In addition, capacitance transients reveal the presence of slow metastable defects in the untreated solar cell. The slow response is considerably reduced by the S‐PDT, suggesting passivation of these slow metastable defects. The results demonstrate the effectiveness of solution‐based S‐treatment in passivating defects, presenting a promising strategy to explore and reduce defect states near the interface of chalcogenide semiconductors.
The continuous improvement of Cu(In,Ga)Se 2 (CIGSe) solar cells relies considerably on advanced characterization of individual layers in the solar-cell stacks as well as of completed CIGSe devices. The present contribution provides an overview of corresponding efforts performed by various research groups at Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. In-situ growth monitoring of CIGSe absorber layers by means of energy-dispersive X-ray spectrometry and light scattering is described, as well as structural analyses by means of X-ray and neutron diffraction. In addition, the characterization of surfaces and interfaces by soft X-ray and electron spectroscopy, the microscopic analysis by means of correlative electron microscopy, and optoelectronic characterization by optical spectroscopy are highlighted. The present contribution shows which substantial efforts in a research network are necessary in order to obtain deeper insight into materials properties and potentially limiting factors for the device performance, as well as to be able to control these factors during the solar-cell production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.