In this paper, we present a multiscale model reduction technique for unsaturated filtration problem in fractured porous media using an Online Generalized Multiscale finite element method. The flow problem in unsaturated soils is described by the Richards equation. To approximate fractures we use the Discrete Fracture Model (DFM). Complex geometric features of the computational domain requires the construction of a fine grid that explicitly resolves the heterogeneities such as fractures. This approach leads to systems with a large number of unknowns, which require large computational costs. In order to develop a more efficient numerical scheme, we propose a model reduction procedure based on the Generalized Multiscale Finite element method (GMsFEM). The GMsFEM allows solving such problems on a very coarse grid using basis functions that can capture heterogeneities. In the GMsFEM, there are offline and online stages. In the offline stage, we construct snapshot spaces and solve local spectral problems to obtain multiscale basis functions. These spectral problems are defined in the snapshot space in each local domain. To improve the accuracy of the method, we add online basis functions in the online stage. The construction of the online basis functions is based on the local residuals. The use of online bases will allow us to get a significant improvement in the accuracy of the method. We present results with different number of offline and online multisacle basis functions. We compare all results with reference solution. Our results show that the proposed method is able to achieve high accuracy with a small computational cost.
In this paper, we consider a numerical homogenization of the poroelasticity problem with stochastic properties. The proposed method based on the construction of the deep neural network (DNN) for fast calculation of the effective properties for a coarse grid approximation of the problem. We train neural networks on the set of the selected realizations of the local microscale stochastic fields and macroscale characteristics (permeability and elasticity tensors). We construct a deep learning method through convolutional neural network (CNN) to learn a map between stochastic fields and effective properties.Numerical results are presented for two and three-dimensional model problems and show that proposed method provide fast and accurate effective property predictions.
In this paper, we consider a poroelasticity problem in heterogeneous multicontinuum media that is widely used in simulations of the unconventional hydrocarbon reservoirs and geothermal fields. Mathematical model contains a coupled system of equations for pressures in each continuum and effective equation for displacement with volume force sources that are proportional to the sum of the pressure gradients for each continuum. To illustrate the idea of our approach, we consider a dual continuum background model with discrete fracture networks that can be generalized to a multicontinuum model for poroelasticity problem in complex heterogeneous media. We present a fine grid approximation based on the finite element method and Discrete Fracture Model (DFM) approach for two and three-dimensional formulations. The coarse grid approximation is constructed using the Generalized Multiscale Finite Element Method (GMsFEM), where we solve local spectral problems for construction of the multiscale basis functions for displacement and pressures in multicontinuum media. We present numerical results for the two and three dimensional model problems in heterogeneous fractured porous media. We investigate relative errors between reference fine grid solution and presented coarse grid approximation using GMsFEM with different numbers of multiscale basis functions. Our results indicate that the proposed method is able to give accurate solutions with few degrees of freedoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.