Electrochemical sensors are devices capable of detecting molecules and biomolecules in solutions and determining the concentration through direct electrical measurements. These systems can be miniaturized to a size less than 1 µm through the creation of small-size arrays of nanoelectrodes (NEA), offering advantages in terms of increased sensitivity and compactness. In this work, we present the fabrication of an electrochemical platform based on an array of nanoelectrodes (NEA) and its possible use for the detection of antigens of interest. NEAs were fabricated by forming arrays of nanoholes on a thin film of polycarbonate (PC) deposited on boron-doped diamond (BDD) macroelectrodes by thermal nanoimprint lithography (TNIL), which demonstrated to be a highly reliable and reproducible process. As proof of principle, gliadin protein fragments were physisorbed on the polycarbonate surface of NEAs and detected by immuno-indirect assay using a secondary antibody labelled with horseradish peroxidase (HRP). This method allows a successful detection of gliadin, in the range of concentration of 0.5–10 μg/mL, by cyclic voltammetry taking advantage from the properties of NEAs to strongly suppress the capacitive background signal. We demonstrate that the characteristics of the TNIL technology in the fabrication of high-resolution nanostructures together with their low-cost production, may allow to scale up the production of NEAs-based electrochemical sensing platform to monitor biochemical molecules for both food and biomedical applications.
The response time of state‐of‐the‐art humidity sensors is ≈8 s. A faster tracking of humidity change is especially required for health care devices. This research is focused on the direct nanostructuring of a humidity‐sensitive polymer thin film and it is combined with an optical read‐out method. The goal is to improve the response time by changing the surface‐to‐volume ratio of the thin film and to test a different measurement method compared to state‐of‐the‐art sensors. Large and homogeneous nanostructured areas are fabricated by nanoimprint lithography on poly(2‐hydroxyethyl methacrylate) thin films. Those thin films are made by initiated chemical vapor deposition (iCVD). To the author's knowledge, this is the first time nanoimprint lithography is applied on iCVD polymer thin films. With the imprinting process, a diffraction grating is developed in the visible wavelength regime. The optical and physicochemical behavior of the nanostructures is modeled with multi‐physic simulations. After successful modeling and fabrication a first proof of concept shows that humidity dependency by using an optical detection of the first diffraction order peak is observable. The response time of the structured thin film results to be at least three times faster compared to commercial sensors.
Guiding of the phase separation of a block copolymer (BCP) by an electric field perpendicular to the substrate is investigated in order to obtain vertical structures that can provide a mask for subsequent etching. Because of practical aspects, the substrate is bare Si without any neutral brush and the process time is limited to 1 h. A polystyrene-block polymethylmethacrylate lamellar material is employed in the study. For a unique guiding of the lamellar phase, an ordering mechanism orthogonal to the electric field is introduced by the interaction with the stamp in a thermal nanoimprint process. The naturally low surface energy of the stamp shall induce the formation of lamellae along the sidewalls of linear cavities. In order to fully utilize these two ordering mechanisms, the stamp sidewalls and the electric field, the imprint process is conducted in such a way that no residual layer remains below the stamp structures and the whole BCP is accumulated inside the cavities which are just partly filled. The electrically-assisted imprint process is studied analytically, considering the capacitive effects due to the local electric field in the cavity and in particular in the BCP. In addition, a numerical simulation is performed for the actual experimental conditions to compute the electric vector field in the BCP. In this way, an extensive understanding of the situation is gained which is the basis for choosing optimal experimental conditions for electrically-assisted thermal nanoimprint. Furthermore, the ambiguity of the electric field in a thermal nanoimprint process with partly filled cavities is addressed. The field shall induce vertical phase separation but, due to instabilities, it also may induce capillary bridges that represent replication defects. An improvement of the vertical phase separation by applying an electric field as high as 25 V/μm could be identified under specific experimental conditions. However, the guiding effect within the cavities and thus the long-range order of the lamellae remained limited. This may be due to a field strength too low in the BCP; in the present configuration, higher field strengths are prohibited by an electrical breakthrough.
Plasmonic lattice nanostructures are of technological interest because of their capacity to manipulate light below the diffraction limit. Here, we present a detailed study of dark and bright modes in the visible and near-infrared energy regime of an inverted plasmonic honeycomb lattice by a combination of Au + focused ion beam lithography with nanometric resolution, optical and electron spectroscopy, and finite-difference time-domain simulations. The lattice consists of slits carved in a gold thin film, exhibiting hotspots and a set of bright and dark modes. We proposed that some of the dark modes detected by electron energy-loss spectroscopy are caused by antiferroelectric arrangements of the slit polarizations with two times the size of the hexagonal unit cell. The plasmonic resonances take place within the 0.5−2 eV energy range, indicating that they could be suitable for a synergistic coupling with excitons in two-dimensional transition metal dichalcogenides materials or for designing nanoscale sensing platforms based on near-field enhancement over a metallic surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.