Background Environmental pollution and weather changes unfavorably impact on cardiovascular disease. However, limited research has focused on ST-elevation myocardial infarction (STEMI), the most severe yet distinctive form of acute coronary syndrome. Methods and results We appraised the impact of environmental and weather changes on the incidence of STEMI, analysing the bivariate and multivariable association between several environmental and atmospheric parameters and the daily incidence of STEMI in two large Italian urban areas. Specifically, we appraised: carbon monoxide (CO), nitrogen dioxide (NO2), nitric oxide (NOX), ozone, particulate matter smaller than 10 μm (PM10) and than 2.5 μm (PM2.5), temperature, atmospheric pressure, humidity and rainfall. A total of 4285 days at risk were appraised, with 3473 cases of STEMI. Specifically, no STEMI occurred in 1920 (44.8%) days, whereas one or more occurred in the remaining 2365 (55.2%) days. Multilevel modelling identified several pollution and weather predictors of STEMI. In particular, concentrations of CO ( p=0.024), NOX ( p=0.039), ozone ( p=0.003), PM10 ( p=0.033) and PM2.5 ( p=0.042) predicted STEMI as early as three days before the event, as well as subsequently, and NO predicted STEMI one day before ( p = 0.010), as well as on the same day. A similar predictive role was evident for temperature and atmospheric pressure (all p < 0.05). Conclusions The risk of STEMI is strongly associated with pollution and weather features. While causation cannot yet be proven, environmental and weather changes could be exploited to predict STEMI risk in the following days.
Between 9 March and 18 May 2020, strict lockdown measures were adopted in Italy for containing the COVID-19 pandemic: in Rome, despite vehicular traffic on average was more than halved, it was not observed a evident decrease of the airborne particulate matter (PM) concentrations, as assessed by air quality data.
In this study, daily PM
10
filters were collected from selected automated stations operated in Rome by the regional network of air quality monitoring: their magnetic properties – including magnetic susceptibility, hysteresis parameters and FORC (first order reversal curves) diagrams - were compared during and after the lockdown, for outlining the impact of the COVID-19 measures on airborne particulate matter.
In urban traffic sites, the PM
10
concentrations did not significantly change after the end of the lockdown, when traffic promptly returned to its usual levels; conversely, the average magnetic susceptibility approximately doubled, and the linear correlation between volume magnetic susceptibility and PM
10
concentration became significant, pointing out the link between PM
10
concentrations and the increasing levels of traffic-related magnetic emissions.
Magnetite-like minerals, attributed to non-exhaust brakes emissions, dominated the magnetic fraction of PM
10
near urban traffic sites, with natural magnetic components emerging in background sites and during exogenous dusts atmospheric events.
Magnetic susceptibility constituted a fast and sensitive proxy of vehicular particulate emissions: the magnetic properties can play a relevant role in the source apportionment of PM
10
, especially when unsignificant variations in its concentration levels may mask important changes in the traffic-related magnetic fraction.
As a further hint, increasing attention should be drawn to the reduction of brake wear emissions, that are overcoming by far fuel exhausts as the main pollutant in traffic contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.