We propose a wearable sensor system for automatic, continuous and ubiquitous analysis of Freezing of Gait (FOG), in patients affected by Parkinson’s disease. FOG is an unpredictable gait disorder with different clinical manifestations, as the trembling and the shuffling-like phenotypes, whose underlying pathophysiology is not fully understood yet. Typical trembling-like subtype features are lack of postural adaptation and abrupt trunk inclination, which in general can increase the fall probability. The targets of this work are detecting the FOG episodes, distinguishing the phenotype and analyzing the muscle activity during and outside FOG, toward a deeper insight in the disorder pathophysiology and the assessment of the fall risk associated to the FOG subtype. To this aim, gyroscopes and surface electromyography integrated in wearable devices sense simultaneously movements and action potentials of antagonist leg muscles. Dedicated algorithms allow the timely detection of the FOG episode and, for the first time, the automatic distinction of the FOG phenotypes, which can enable associating a fall risk to the subtype. Thanks to the possibility of detecting muscles contractions and stretching exactly during FOG, a deeper insight into the pathophysiological underpinnings of the different phenotypes can be achieved, which is an innovative approach with respect to the state of art.
We propose an unobtrusive, wearable, and wireless system for the pre-screening and follow-up in the domestic environment of specific sleep-related breathing disorders. This group of diseases manifests with episodes of apnea and hypopnea of central or obstructive origin, and it can be disabling, with several drawbacks that interfere in the daily patient life. The gold standard for their diagnosis and grading is polysomnography, which is a time-consuming, scarcely available test with many wired electrodes disseminated on the body, requiring hospitalization and long waiting times. It is limited by the night-by-night variability of sleep disorders, while inevitably causing sleep alteration and fragmentation itself. For these reasons, only a small percentage of patients achieve a definitive diagnosis and are followed-up. Our device integrates photoplethysmography, an accelerometer, a microcontroller, and a bluetooth transmission unit. It acquires data during the whole night and transmits to a PC for off-line processing. It is positioned on the nasal septum and detects apnea episodes using the modulation of the photoplethysmography signal during the breath. In those time intervals where the photoplethysmography is detecting an apnea, the accelerometer discriminates obstructive from central type thanks to its excellent sensitivity to thoraco-abdominal movements. Tests were performed on a hospitalized patient wearing our integrated system and the type III home sleep apnea testing recommended by The American Academy of Sleep Medicine. Results are encouraging: sensitivity and precision around 90% were achieved in detecting more than 500 apnea episodes. Least thoraco-abdominal movements and body position were successfully classified in lying down control subjects, paving the way toward apnea type classification.
A novel wearable smart patch can monitor various aspects of physical activity, including the dynamics of running, but like any new device developed for such applications, it must first be tested for validity. Here, we compare the step rate while running in place as measured by this smart patch to the corresponding values obtained utilizing ‘‘gold standard’’ MEMS accelerometers in combination with bilateral force plates equipped with HBM load cells, as well as the values provided by a three-dimensional motion capture system and the Garmin Dynamics Running Pod. The 15 healthy, physically active volunteers (age = 23 ± 3 years; body mass = 74 ± 17 kg, height = 176 ± 10 cm) completed three consecutive 20-s bouts of running in place, starting at low, followed by medium, and finally at high intensity, all self-chosen. Our major findings are that the rates of running in place provided by all four systems were valid, with the notable exception of the fast step rate as measured by the Garmin Running Pod. The lowest mean bias and LoA for these measurements at all rates were associated consistently with the smart patch.
In this work, we propose a wireless wearable system for the acquisition of multiple biopotentials through charge transfer electrostatic sensors realized in MEMS technology. The system is designed for low power consumption and low invasiveness, and thus candidates for long-time monitoring in free-living conditions, with data recording on an SD or wireless transmission to an external elaborator. Thanks to the wide horizon of applications, research is very active in this field, and in the last few years, some devices have been introduced on the market. The main problem with those devices is that their operation is time-limited, so they do not match the growing demand for long monitoring, which is a must-have feature in diagnosing specific diseases. Furthermore, their versatility is hampered by the fact that they have been designed to record just one type of signal. Using ST-Qvar sensors, we acquired an electrocardiogram trace and single-channel scalp electroencephalogram from the frontal lobes, together with an electrooculogram. Excellent results from all three types of acquisition tests were obtained. The power consumption is very low, demonstrating that, thanks to the MEMS technology, a continuous acquisition is feasible for several days.
By controlling the properties of its medium, supercooled liquid Ga (SLGa) based stretchable remains stretchable at −22 °C, i.e., 52 °C below its thermodynamic melting point of Ga. Thus far, our oldest deposited SLGa circuit and film have remained liquids for 2 years at room temperature. The study investigates the crystallization of SLGa triggered by the surface energy of nucleation agents, temperature, circuit cross-section, and mechanical impact. Based on these parameters, a method is presented to integrate electronic components with SLGa circuits without compromising its supercooling effect. Further, the large stiffness variation induced by phase transition is demonstrated in different applications. For the desired stiffness variation, the crystallization rate can be controlled by varying the temperature and cross-section area. Finally, spray-printing an ink of microscale SLGa microscale particles can conformally pattern Ga on a rough surface, e.g., to fabricate a stretchable array of SLGa microelectrodes. A smart patch with stretchable SLGa electrode arrays records human electrocardiogram signals in cold water and does not stain the skin after use. Its low and stable impedance in water will enable novel applications in wearable electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.