Contamination in insulators results in an increase in surface conductivity. With higher surface conductivity, insulators are more vulnerable to discharges that can damage them, thus reducing the reliability of the electrical system. One of the indications that the insulator is losing its insulating properties is its increase in leakage current. By varying the leakage current over time, it is possible to determine whether the insulator will develop an irreversible failure. In this way, by predicting the increase in leakage current, it is possible to carry out maintenance to avoid system failures. For forecasting time series, there are many models that have been studied and the definition of which model is suitable for evaluation depends on the characteristics of the data associated with the analysis. Thus, this work aims to identify the most suitable model to predict the increase in leakage current in relation to the time the insulator is outdoors, exposed to environmental variations using the same database to compare the methods. In this paper, the models based on linear regression, support vector regression (SVR), multilayer Perceptron (MLP), deep neural network (DNN), and recurrent neural network (RNN) will be analyzed comparatively. The best accuracy results for prediction were found using the RNN models, resulting in an accuracy of up to 97.25%.
This work was supported by Junta De Castilla y León-Consejería De Economía Y Empleo: System for simulation and training in advanced techniques for the occupational risk prevention through the design of hybrid-reality environments with ref J118.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.