The analysis of the optimal strategies for the deployment of a spacecraft into a highly elliptic orbit is carried out by means of an indirect optimization procedure, which is based on the theory of optimal control. The orbit peculiarities require that several perturbations are taken into account: an 8 × 8 model of the Earth potential is adopted and gravitational perturbations from Moon and Sun together with solar radiation pressure are considered. A procedure to guarantee convergence and define the optimal switching structure is outlined. Results concerning missions with up to 4.5 revolutions around the Earth are given, and significant features of this kind of deployment are highlighted.
The objective of this work is the preliminary design of a low-ΔV transfer from an initial elliptical orbit around Jupiter into a final circular orbit around the moon Europa. This type of trajectory represents an excellent opportunity for a low-cost mission to Europa, accomplished through a small orbiter, as in the proposed Europa Tomography Probe mission, a European contribution to NASA's Europa Multiple-Flyby Mission (or Europa Clipper). The mission strategy is based on the v ∞ leveraging concept, and the use of resonant orbits to exploit multiple gravity-assist from the moon. Possible sequences of resonant orbits are selected with the help of the Tisserand graph. Suitable trajectories are provided by an optimization code based on the parallel running of several differential evolution algorithms. Different solutions are finally compared in terms of propellant consumption and flight time.
The paper investigates the dynamic behavior of a spacecraft when a single magnetic torque-rod is used for achieving a pure spin condition by means of the so-called Y-dot control law. Global asymptotic convergence to a pure spin condition is proven on analytical grounds when the dipole moment is proportional to the rate of variation of the component of the magnetic field along the desired spin axis. Convergence of the spin axis towards the orbit normal is then explained by estimating the average magnetic control torque over one orbit. The validity of the analytical results, based on some simplifying assumptions and approximations, is finally investigated by means of numerical simulation for a fully non-linear attitude dynamic model, featuring a tilted dipole model for Earth׳s magnetic field. The analysis aims to support, in the framework of a sound mathematical basis, the development of effective control laws in realistic mission scenarios. Results are presented and discussed for relevant test cases
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.