This paper presents the main characteristics of the evolutionary optimization code named EOS, Evolutionary Optimization at Sapienza, and its successful application to challenging, real-world space trajectory optimization problems. EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables. It implements a number of improvements to the well-known Differential Evolution (DE) algorithm, namely, a self-adaptation of the control parameters, an epidemic mechanism, a clustering technique, an ε-constrained method to deal with nonlinear constraints, and a synchronous island-model to handle multiple populations in parallel. The results reported prove that EOS is capable of achieving increased performance compared to state-of-the-art single-population selfadaptive DE algorithms when applied to high-dimensional or highly-constrained space trajectory optimization problems.
This paper presents a convex programming approach to the optimization of a multistage launch vehicle ascent trajectory, from the liftoff to the payload injection into the target orbit, taking into account multiple nonconvex constraints, such as the maximum heat flux after fairing jettisoning and the splash-down of the burned-out stages. Lossless and successive convexification are employed to convert the problem into a sequence of convex subproblems. Virtual controls and buffer zones are included to ensure the recursive feasibility of the process and a state-of-the-art method for updating the reference solution is implemented to filter out undesired phenomena that may hinder convergence. A hp pseudospectral discretization scheme is used to accurately capture the complex ascent and return dynamics with a limited computational effort. The convergence properties, computational efficiency, and robustness of the algorithm are discussed on the basis of numerical results. The ascent of the VEGA launch vehicle toward a polar orbit is used as case study to discuss the interaction between the heat flux and splash-down constraints. Finally, a sensitivity analysis of the launch vehicle carrying capacity to different splash-down locations is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.