We have developed an all-electronic digital microfluidic device for microscale chemical synthesis in organic solvents, operated by electrowetting-on-dielectric (EWOD). As an example of the principles, we demonstrate the multistep synthesis of ½ 18 FFDG, the most common radiotracer for positron emission tomography (PET), with high and reliable radio-fluorination efficiency of ½ 18 FFTAG (88 AE 7%, n ¼ 11) and quantitative hydrolysis to ½ 18 FFDG (>95%, n ¼ 11). We furthermore show that batches of purified ½ 18 FFDG can successfully be used for PET imaging in mice and that they pass typical quality control requirements for human use (including radiochemical purity, residual solvents, Kryptofix, chemical purity, and pH). We report statistical repeatability of the radiosynthesis rather than bestcase results, demonstrating the robustness of the EWOD microfluidic platform. Exhibiting high compatibility with organic solvents and the ability to carry out sophisticated actuation and sensing of reaction droplets, EWOD is a unique platform for performing diverse microscale chemical syntheses in small volumes, including multistep processes with intermediate solvent-exchange steps. molecular imaging | PET probes | synthetic chemistry | lab on a chip | on-chip chemistry T he use of micro-reaction technology in chemistry has grown tremendously over the past several years (1), due primarily to the highly precise control of reaction conditions that is possible through rapid mixing and heat transport, leading to improved reaction speeds and selectivity compared to macroscale approaches (2). Additional advantages include straightforward scale-up of production without changing conditions, and increased safety in dangerous syntheses due to the minute amounts of reagents within the reactor at any given time. A further advantage of microfluidics is the ability to perform reactions in extremely small volumes, which is valuable for many applications, especially when working with scarce reagents, such as isolated proteins or natural products, products of long synthetic pathways, or short-lived radiolabeled radioisotopes where the needed mass quantities are extremely low (3).Myriad microfluidic platforms have been explored for chemical reactions that can be classified into three basic formats: (i) flow-through (or continuous flow), (ii) droplet or slug, or (iii) batch. In flow-through systems, streams of two or more reagents are mixed and reacted by flowing through a residence time unit held at a constant temperature or immersed in a fixed microwave field. Continuous liquid-liquid extraction and other processes have been developed to enable multistep reactions where different solvents are required in different steps (4). Droplet and slug systems are a variant of flow-through systems, in which individual droplets or slugs (with volumes down to tens of nanoliters) are separated by an immiscible carrier fluid, each acting as an isolated batch microreactor and enabling vastly reduced reaction volumes. Screening assays and optimization studies...
Heavy element loaded polymer composites have long been proposed to detect high energy X- and γ-rays upon scintillation. The previously reported bulk composite scintillators have achieved limited success because of the diminished light output resulting from fluorescence quenching and opacity. We demonstrate the synthesis of a transparent nanocomposite comprising gadolinium oxide nanocrystals uniformly dispersed in bulk-size samples at a high loading content. The strategy to avoid luminescence quenching and opacity in the nanocomposite was successfully deployed, which led to the radioluminescence light yield of up to 27 000/MeV, about twice as much as standard commercial plastic scintillators. Nanocomposites monoliths (14 mm diameter by 3 mm thickness) with 31 wt% loading of nanocrystals generated a photoelectric peak for Cs-137 gamma (662 keV) with 11.4% energy resolution.
Superconductivity, magnetic order, and quadrupolar order have been investigated in the filled skutterudite system Pr1−xNdxOs4Sb12 as a function of composition x in magnetic fields up to 9 tesla and at temperatures between 50 mK and 10 K. Electrical resistivity measurements indicate that the high field ordered phase (HFOP), which has been identified with antiferroquadruoplar order, persists to x ∼ 0.5. The superconducting critical temperature Tc of PrOs4Sb12 is depressed linearly with Nd concentration to x ∼ 0.55, whereas the Curie temperature TF M of NdOs4Sb12 is depressed linearly with Pr composition to (1 − x) ∼ 0.45. In the superconducting region, the upper critical field Hc2(x, 0) is depressed quadratically with x in the range 0 < x < ∼ 0.3, exhibits a kink at x ≈ 0.3, and then decreases linearly with x in the range 0.3 < ∼ x < ∼ 0.6. The behavior of Hc2(x, 0) appears to be due to pair breaking caused by the applied magnetic field and the exhange field associated with the polarization of the Nd magnetic moments, in the superconducting state. From magnetic susceptibility measurements, the correlations between the Nd moments in the superconducting state appear to change from ferromagnetic in the range 0.3 < ∼ x < ∼ 0.6 to antiferromagnetic in the range 0 < x < ∼ 0.3. Specific heat measurements on a sample with x = 0.45 indicate that magnetic order occurs in the superconducting state, as is also inferred from the depression of Hc2(x, 0) with x.
A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm2) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm2), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can potentially lead to a high spatial resolution, high sensitivity and DOI PET system.
Microfluidic technologies provide an attractive platform for the synthesis of radiolabeled compounds. Visualization of radioisotopes on chip is critical for synthesis optimization and technological development. With Cerenkov imaging, beta particle emitting isotopes can be localized with a sensitive CCD camera. In order for Cerenkov imaging to also serve as a quantitative tool, it is necessary to understand how material properties relevant to Cerenkov emission, namely, index of refraction and beta particle stopping power, affect Cerenkov light output. In this report, we investigate the fundamental physical characteristics of Cerenkov photon yield at different stages of [18F]FDG synthesis on the electrowetting on dielectric (EWOD) microfluidic platform. We also demonstrate how Cerenkov imaging has enabled synthesis optimization. Geant4, a Monte Carlo program applied extensively in high energy physics, is used to simulate Cerenkov photon yield from 18F beta particles traversing materials of interest during [18F]FDG synthesis on chip. Our simulations show that the majority (approximately two-thirds) of the 18F beta particle energy available to produce Cerenkov photons is deposited on the glass plates of the EWOD chip. This result suggests the possibility of using a single calibration factor to convert Cerenkov signal to radioactivity, independent of droplet composition. We validate our simulations with a controlled measurement examining varying ratios of [18O]H2O, dimethyl sulfoxide (DMSO), and acetonitrile (MeCN), and find a consistent calibration independent of solvent composition. However, the calibration factor may underestimate the radioactivity in actual synthesis due to discoloration of the droplet during certain steps of probe synthesis. In addition to the attractive quantitative potential of Cerenkov imaging, this imaging strategy provides indispensable qualitative data to guide synthesis optimization. We are able to use this imaging technique to optimize the mixing protocol as well as identify and correct for loss of radioactivity due to the migration of radioactive vapor outside of the EWOD heater, enabling an overall increase in the crude radiochemical yield from 50±3% (n=3) to 72±13% (n=5).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.