Light-initiated additive manufacturing techniques typically rely on layer-by-layer addition or continuous extraction of polymers formed via nonliving, free radical polymerization methods that render the final materials “dead” toward further monomer insertion; the polymer chains within the materials cannot be reactivated to induce chain extension. An alternative “living additive manufacturing” strategy would involve the use of photocontrolled living radical polymerization to spatiotemporally insert monomers into dormant “parent” materials to generate more complex and diversely functionalized “daughter” materials. Here, we demonstrate a proof-of-concept study of living additive manufacturing using end-linked polymer gels embedded with trithiocarbonate iniferters that can be activated by photoinduced single-electron transfer from an organic photoredox catalyst in solution. This system enables the synthesis of a wide range of chemically and mechanically differentiated daughter gels from a single type of parent gel via light-controlled modification of the parent’s average composition, strand length, and/or cross-linking density. Daughter gels that are softer than their parent, stiffer than their parent, larger but with the same modulus as their parent, thermally responsive, polarity responsive, healable, and weldable are all realized.
Controlling the molecular structure of amorphous cross-linked polymeric materials is a longstanding challenge. Herein, we disclose a general strategy for precise tuning of loop defects in covalent polymer gel networks. This "loop control" is achieved through a simple semibatch monomer addition protocol that can be applied to a broad range of network-forming reactions. By controlling loop defects, we demonstrate that with the same set of material precursors it is possible to tune and in several cases substantially improve network connectivity and mechanical properties (e.g., ∼600% increase in shear storage modulus). We believe that the concept of loop control via continuous reagent addition could find broad application in the synthesis of academically and industrially important cross-linked polymeric materials, such as resins and gels.
Polyolefins including linear low density polyethylene (LLDPE), high density polyethylene (HDPE), and isotactic polypropylene (iPP) account for nearly 2/3 of the worldwide plastics market. With wide-ranging applications, often short term in nature such as packaging, recycling of polyolefins is becoming increasingly important in developing a sustainable worldwide plastics market. However, it is difficult to separate polyolefins in mixed recycle streams; it would be advantageous to melt blend them, but their immiscibility leads to blends with poor properties. Here we demonstrate the role of synthetic history (i.e., site specific metallocene vs heterogeneous Ziegler−Natta catalyzed) on the oligomer content of HDPE, LLDPE, and iPP and its influence on adhesion between PE and iPP. Using a range of polymers and processing conditions, we identify four classes of such interfaces with a wide range of interfacial adhesion strengths (G IC ): excess oligomer (G IC < 30 N/m), easy chain pullout (G IC ≅ 100 N/m), kinetically trapped entanglements (G IC ≅ 600 N/m), and crystallization across the interface (G IC > 1200 N/m). Using molecular weight distribution data, we identified a critical oligomer content where the interfacial failure mechanism transitions from cohesive failure (G IC > 1200 N/m) to adhesive failure (G IC ≅ 100 N/m). Transmission electron microscopy (TEM) and atomic force microscopy (AFM) highlight distinct interfacial semicrystalline morphologies for each class of polyolefin interface which are defined by molecular parameters and processing conditions. Polyolefin blends were compression molded to highlight the role of interfacial strength in blends formed from mixed polyolefin streams; weak interfaces resulting from excess oligomer buildup yielded brittle failure while superior interfacial adhesion resulted in ductile blend failure.
A photochemical modification of melt-extruded polymeric nanofibers is described. A bioorthogonal functional group is used to decorate fibers made exclusively from commodity polymers, covalently attach fluorophores and peptides, and direct cell growth. Our process begins by using a layered coextrusion method, where poly(ε-caprolactone) (PCL) nanofibers are incorporated within a macroscopic poly(ethylene oxide) (PEO) tape through a series of die multipliers within the extrusion line. The PEO layer is then removed with a water wash to yield rectangular PCL nanofibers with controlled cross-sectional dimensions. The fibers can be subsequently modified using photochemistry to yield a “clickable” handle for performing the copper-catalyzed azide–alkyne cycloaddition (CuAAC) reaction on their surface. We have attached fluorophores, which exhibit dense surface coverage when using ligand-accelerated CuAAC reaction conditions. In addition, an RGD peptide motif was coupled to the surface of the fibers. Subsequent cell-based studies have shown that the RGD peptide is biologically accessible at the surface, leading to increased cellular adhesion and spreading versus PCL control surfaces. This functionalized coextruded fiber has the advantages of modularity and scalability, opening a potentially new avenue for biomaterials fabrication.
This review discusses existing and emerging polymeric nanofiber fabrication techniques, fiber surface modification via post-processing, and their combined effects on cell adhesion, proliferation, and migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.