In biological reduction processes the dihydronicotinamides NAD(P)H often transfer hydride to an unsaturated substrate bound within an enzyme active site. In many cases, metal ions in the active site bind, polarize and thereby activate the substrate to direct attack by hydride from NAD(P)H cofactor. This review looks more widely at the metal coordination chemistry of organic donors of hydride ion--organo-hydrides--such as dihydronicotinamides, other dihydropyridines including Hantzsch's ester and dihydroacridine derivatives, those derived from five-membered heterocycles including the benzimidazolines and benzoxazolines, and all-aliphatic hydride donors such as hexadiene and hexadienyl anion derivatives. The hydride donor properties--hydricities--of organo-hydrides and how these are affected by metal ions are discussed. The coordination chemistry of organo-hydrides is critically surveyed and the use of metal-organo-hydride systems in electrochemically-, photochemically- and chemically-driven reductions of unsaturated organic and inorganic (e.g. carbon dioxide) substrates is highlighted. The sustainable electrocatalytic, photochemical or chemical regeneration of organo-hydrides such as NAD(P)H, including for driving enzyme-catalysed reactions, is summarised and opportunities for development are indicated. Finally, new prospects are identified for metal-organo-hydride systems as catalysts for organic transformations involving 'hydride-borrowing' and for sustainable multi-electron reductions of unsaturated organic and inorganic substrates directly driven by electricity or light or by renewable reductants such as formate/formic acid.
Molecular cerium complexes are a new class of tunable and energy-efficient visible- and UV-luminophores. Understanding and controlling the emission brightness and color are important for tailoring them for new and specialized applications. Herein, we describe the experimental and computational analyses for series of tris(guanidinate) (1-8, Ce{(RN)C(N Pr)}, R = alkyl, silyl, or phenyl groups), guanidinate-amide [GA, A = N(SiMe), G = (MeSi)NC(N Pr)], and guanidinate-aryloxide (GOAr, OAr = 2,6-di- tert-butylphenoxide) cerium(III) complexes to understand and develop predictive capabilities for their optical properties. Structural studies performed on complexes 1-8 revealed marked differences in the steric encumbrance around the cerium center induced by various guanidinate ligand backbone substituents, a property that was correlated to photoluminescent quantum yield. Computational studies revealed that consecutive replacements of the amide and aryloxide ligands by guanidinate ligand led to less nonradiative relaxation of bright excited states and smaller Stokes shifts. The results establish a comprehensive structure-luminescence model for molecular cerium(III) luminophores in terms of both quantum yields and colors. The results provide a clear basis for the design of tunable, molecular, cerium-based, luminescent materials.
The multielectron reduction of small molecules (e.g., CO) is a key aspect of fuel synthesis from renewable electricity. Transition metals have been researched extensively in this role due to their intrinsic redox properties and reactivity, but more recently, strategies that forego transition metal ions for p-block elements have emerged. In this vein, we report an analogue of boranthrene (9,10-diboraanthracene) stabilized by N-heterocyclic carbenes and its one- and two-electron oxidized congeners. This platform exhibits reversible, two-electron redox chemistry at mild potentials and reacts with O, CO, and ethylene via formal [4+2] cycloaddition to the central diborabutadiene core. In an area traditionally dominated by transition metals, these results outline an approach for the redox activation of small molecules at mild potentials based on conjugated, light element scaffolds.
The oxidation of methanol by dehydrogenase enzymes is an essential part of the bacterial methane metabolism cycle. The recent discovery of a lanthanide (Ln) cation in the active site of the XoxF dehydrogenase represents the only example of a rare-earth element in a physiological role. Herein, we report the first synthetic, functional model of Ln-dependent dehydrogenase and its stoichiometric and catalytic dehydrogenation of a benzyl alcohol. Density functional theory calculations implicate a hydride transfer mechanism for these reactions.
A series of thorium(IV)-imido complexes was synthesized and characterized. Extensive experimental and computational comparisons with the isostructural cerium(IV)-imido complexes revealed a notably more covalent bonding arrangement for the CeN bond compared with the more ionic ThN bond. The thorium-imido moieties were observed to be 3 orders of magnitude more basic than their cerium congeners. More generally, these results provide unique experimental evidence for the larger covalent character of 4f 0 5d 0 Ce(IV) multiple bonds compared to its 5f 0 6d 0 Th(IV) actinide congener.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.