Hierarchical Temporal Memory (HTM) is an online machine learning algorithm that emulates the neo-cortex. The development of a scalable on-chip HTM architecture is an open research area. The two core substructures of HTM are spatial pooler and temporal memory. In this work, we propose a new Spatial Pooler circuit design with parallel memristive crossbar arrays for the 2D columns. The proposed design was validated on two different benchmark datasets, face recognition, and speech recognition. The circuits are simulated and analyzed using a practical memristor device model and 0.18 μm IBM CMOS technology model. The databases AR, YALE, ORL, and UFI, are used to test the performance of the design in face recognition. TIMIT dataset is used for the speech recognition.
Hierarchical Temporal Memory is a new machine learning algorithm intended to mimic the working principle of neocortex, part of the human brain, which is responsible for learning, classification, and making predictions. Although many works illustrate its effectiveness as a software algorithm, hardware design for HTM remains an open research problem. Hence, this work proposes an architecture for HTM Spatial Pooler and Temporal Memory with learning mechanism, which creates a single image for each class based on important and unimportant features of all images in the training set. In turn, the reduction in the number of templates within database reduces the memory requirements and increases the processing speed. Moreover, face recognition analysis indicates that for a large number of training images, the proposed design provides higher accuracy results (83.5%) compared to only Spatial Pooler design presented in the previous works.
Real-time detection of moving objects involves memorisation of features in the template image and their comparison with those in the test image. At high sampling rates, such techniques face the problems of high algorithmic complexity and component delays. We present a new resistive switching based threshold logic cell which encodes the pixels of a template image. The cell comprises a voltage divider circuit that programs the resistances of the memristors arranged in a single node threshold logic network and the output is encoded as a binary value using a CMOS inverter gate. When a test image is applied to the templateprogrammed cell, a mismatch in the respective pixels is seen as a change in the output voltage of the cell. The proposed cell when compared with CMOS equivalent implementation shows improved performance in area, leakage power, power dissipation and delay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.