The performance of a conventional laboratory near-infrared (NIR) spectrometer and two NIR spectrometer prototypes (a Texas Instruments NIRSCAN Nano evaluation model (EVM) and an InnoSpectra NIR-M-R2 spectrometer) are compared by collecting reflectance spectra of 270 well-characterized herbaceous biomass samples, building calibration models using the partial least squares (PLS-2) algorithm to predict five constituents of the samples from the reflectance spectra, and comparing the resulting model statistics. The prediction models developed using spectra from the Foss XDS spectrometer were slightly better than the prediction models developed using spectra from either the TI NIRSCAN Nano EVM and the InnoSpectra NIR-M-R2 as measured by the root mean square error (RMSECV) and the correlation coefficient (R2_cv) for “leave-one-out” cross-validation (CV). The models built from the two prototype units were not statistically significantly different from each other (p = 0.05). The Foss spectrometer has a larger wavelength range (400–2500 nm) compared with the two prototypes (900–1700 nm). When the spectra from the Foss XDS spectrometer were truncated so their wavelength range matched the wavelength range of the two prototype units, the resulting model was not statistically significantly different from the models from either prototype.
Access to and use of these Methods shall impose the following obligations on the user. The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance, and distribute these Methods for any purpose whatsoever, except commercial sales, provided that this entire notice appears in all copies of the Methods. The user agrees to credit NREL/Alliance in any publications that result from the use of these Methods. The user also understands that NREL/Alliance is not obligated to provide the user with any support, consulting, training, or any training or assistance of any kind with regard to the use of these Methods or to provide the user with any updates, revisions, or new versions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.