Biopsy samples were taken from the vastus lateralis of 18- to 84-yr-old male sprinters (n = 91). Fiber-type distribution, cross-sectional area, and myosin heavy chain (MHC) isoform content were identified using ATPase histochemistry and SDS-PAGE. Specific tension and maximum shortening velocity (V(o)) were determined in 144 single skinned fibers from younger (18-33 yr, n = 8) and older (53-77 yr, n = 9) runners. Force-time characteristics of the knee extensors were determined by using isometric contraction. The cross-sectional area of type I fibers was unchanged with age, whereas that of type II fibers was reduced (P < 0.001). With age there was an increased MHC I (P < 0.01) and reduced MHC IIx isoform content (P < 0.05) but no differences in MHC IIa. Specific tension of type I and IIa MHC fibers did not differ between younger and older subjects. V(o) of fibers expressing type I MHC was lower (P < 0.05) in older than in younger subjects, but there was no difference in V(o) of type IIa MHC fibers. An aging-related decline of maximal isometric force (P < 0.001) and normalized rate of force development (P < 0.05) of knee extensors was observed. Normalized rate of force development was positively associated with MHC II (P < 0.05). The sprint-trained athletes experienced the typical aging-related reduction in the size of fast fibers, a shift toward a slower MHC isoform profile, and a lower V(o) of type I MHC fibers, which played a role in the decline in explosive force production. However, the muscle characteristics were preserved at a high level in the oldest runners, underlining the favorable impact of sprint exercise on aging muscle.
SummaryThe skeletal muscle fibre is a syncitium where each myonucleus regulates the gene products in a finite volume of the cytoplasm, i.e., the myonuclear domain (MND). We analysed aging-and gender-related effects on myonuclei organization and the MND size in single muscle fibres from six young (21-31 years) and nine old men (72-96 years), and from six young (24-32 years) and nine old women (65-96 years), using a novel image analysis algorithm applied to confocal images. Muscle fibres were classified according to myosin heavy chain (MyHC) isoform expression. Our image analysis algorithm was effective in determining the spatial organization of myonuclei and the distribution of individual MNDs along the single fibre segments. Significant linear relations were observed between MND size and fibre size, irrespective age, gender and MyHC isoform expression. The spatial organization of individual myonuclei, calculated as the distribution of nearest neighbour distances in 3D, and MND size were affected in old age, but changes were dependent on MyHC isoform expression. In type I muscle fibres, average NN-values were lower and showed an increased variability in old age, reflecting an aggregation of myonuclei in old age. Average MND size did not change in old age, but there was an increased MND size variability. In type IIa fibres, average NN-values and MND sizes were lower in old age, reflecting the smaller size of these muscle fibres in old age. It is suggested that these changes have a significant impact on protein synthesis and degradation during the aging process.
The present results provide evidence of specific ageing- and gender-related differences in regulation of muscle contraction at the cellular level. It is suggested that these cellular changes have a significant impact on muscle function and the ageing-related motor handicap.
Adding strength training stimulus to the training programme improved maximal, explosive and sport-specific force production in elite master sprinters. These improvements were primarily related to hypertrophic muscular adaptations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.