Commercial aircraft today require efficient high-lift and control systems on the wings to reduce the drag in flight or decrease the take-off and landing speeds. Morphing mechanisms are one approach for improved high-lift systems. In most cases the objective function is an increased lift to drag ratio or the noise reduction. On closer examination control systems as well as morphing mechanisms are located in a certain wing segment. The transition between a moving wing part and the fixed wing is a step, which creates additional vortices. This segments the wing in span-wise direction and reduces the efficiency. A flexible skin between a moving and a fixed wing parts smooths the contour and minimize the efficiency reduction of the wing. A full scale demonstrator of a wing segment was manufactured with two flexible skin designs. The first subcomponent connects a morphing leading edge with a rib of the wing over a span of one meter. The skin is a material mix of ethylene-propylene-diene monomer (EPDM) rubber and fiberglass-reinforced plastic. The rubber is the basis of the skin and the glass-fiber is added as local skin stiffeners in the form of strips in chord-wise direction. The second subcomponent blends the aileron with a rib of the wing in a triangular design. The connection of three different hinges realizes a morphing triangle, which is loaded in an in-plane shear only state of stress in each aileron position. The core of the triangle is a 3D printed structure, which is free in shear. The covering skin is a combination of EPDM with carbon fibers oriented in +/−30° direction to obtain shear compliance and to resist the loads on the triangle. The deformation of each concept is identified at the demonstrator. Therefore, an optical measurement system scans the surface in the initial and deflected state. The required deformation precision of the concepts differs due to their design. The contour at the leading edge requires a certain shape over the span. The analysis of the skin buckling is one requirement at the transition triangle during the aileron motion. The experimental results show a smooth transition contour at the leading edge and no buckling effects at the triangle. The results can be used for the validation of simulation models. Furthermore, both skin concepts cover the gap between a moving wing segment and a fixed wing part. The elimination of steps in span-wise direction can improve the aero-acoustic behavior along the wing for future aircraft.
The adaptation of a wing contour is important for most aircraft, because of the different flight states. That’s why an enormous number of mechanisms exists and reaches from conventional slats and flaps to morphing mechanisms, which are integrated in the wing. Especially integrated mechanisms reduce the number of gaps at the wing skin and produce less turbulent flow. However these concepts are located at a certain section of the wing. This leads to morphing and fixed wing sections, which are located next to each other. Commonly, the transition between these sections is not designed or a wing fence is used. If the transition is not designed, the wing has a step with an activated morphing mechanism and that produces additional vortices. A new skin design will be presented in order to smooth the contour between a fixed wing and a morphing wing. Here the transition between a droop nose and a fixed wing is considered. The skin material is a mix of ethylene propylene diene monomer rubber and glass-fiber reinforced plastic. The rubber is the baseline material, while the glass-fiber is added as stripes in chord-wise direction. In span-wise direction the glass fiber is connected with the rubber. The rubber carries the loads in span-wise direction and reduces the required actuation force. The glass fiber stiffens the skin locally in chord wise direction and keeps the basic contour of the skin. Some geometrical parameters within the skin layup can be varied to change the transition along the span or to reduce the maximum strain within the skin. The local strain maximum is a result of the material transition with different modules. One design of a leading edge was manufactured with an existing mold and it has a span of 200 mm. There are two essential aspects from a structural point of view. One is a nearly continuous deformation along the span and the second is the maximum strain in the rubber. Both aspects are investigated in an experiment and the results are compared with a simulation model. The results show a reliable concept and its numerical model, which will be assigned to a full scale demonstrator. This demonstrator will have a span of 1000 mm and will show the smooth skin transition between a droop nose and a fixed wing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.