Intravenous administration of TXA successfully reduced mean peri-operative blood drainage, total estimated blood loss, pain during the first post-operative days, and haematoma formation in total shoulder arthroplasty. Cite this article: 2017;99-B:1073-9.
Covid-19 is an infectious disease associated with cytokine storms and derailed sympatho-vagal balance leading to respiratory distress, hypoxemia and cardiovascular damage. We applied the auricular vagus nerve stimulation to modulate the parasympathetic nervous system, activate the associated anti-inflammatory pathways, and reestablish the abnormal sympatho-vagal balance. aVNS is performed percutaneously using miniature needle electrodes in ear regions innervated by the auricular vagus nerve. In terms of a randomized prospective study, chronic aVNS is started in critical, but not yet ventilated Covid-19 patients during their stay at the intensive care unit. The results show decreased pro-inflammatory parameters, e.g. a reduction of CRP levels by 32% after 1 day of aVNS and 80% over 7 days (from the mean 151.9 mg/dl to 31.5 mg/dl) or similarly a reduction of TNFalpha levels by 58.1% over 7 days (from a mean 19.3 pg/ml to 8.1 pg/ml) and coagulation parameters, e.g. reduction of DDIMER levels by 66% over 7 days (from a mean 4.5 μg/ml to 1.5 μg/ml) and increased anti-inflammatory parameters, e.g. an increase of IL-10 levels by 66% over 7 days (from the mean 2.7 pg/ml to 7 pg/ml) over the aVNS duration without collateral effects. aVNS proved to be a safe clinical procedure and could effectively supplement treatment of critical Covid-19 patients while preventing devastating over-inflammation.
Severe trauma associated with later disability and mortality still constitutes a major health and socioeconomic problem throughout the world. While primary morbidity and mortality are mostly related to initial injuries and early complications, secondary lethality is strongly linked to the development of systemic inflammatory response syndrome, sepsis, and ultimately multiple organ dysfunction syndrome. We herein report on a 49-year-old male patient who was admitted to the hospital after a traumatic amputation of his right forearm that was cut off while working on a landfill. After initial treatment for shock, he received immediate replantation and was transferred to the ICU. Due to the anticipated risk of a complex infection, continuous renal replacement therapy in combination with CytoSorb was initiated. During the course of the combined treatment, a rapid improvement in hemodynamics was noticed, as well as a significant reduction of IL-6 and lactate levels. Despite a recurring septic episode and the necessity for amputation, the patient clinically stabilized and underwent complete recovery. The early treatment with a combination of CVVHDF and CytoSorb was accompanied by an attenuation of the systemic inflammatory reaction, which subsided without major or permanent organ damage, despite the impressive pathogen spectrum and the pronounced local damage.
Summary
Background
In addition to respiratory symptoms, many patients with coronavirus disease 2019 (COVID-19) present with neurological complications. Several case reports and small case series described myoclonus in five patients suffering from the disease. The purpose of this article is to report on five critically ill patients with COVID-19-associated myoclonus.
Material and methods
The clinical courses and test results of patients treated in the study center ICU and those of partner hospitals are described. Imaging, laboratory tests and electrophysiological test results are reviewed and discussed.
Results
In severe cases of COVID-19 myoclonus can manifest about 3 weeks after initial onset of symptoms. Sedation is sometimes effective for symptom control but impedes respiratory weaning. No viral particles or structural lesions explaining this phenomenon were found in this cohort.
Conclusion
Myoclonus in patients with severe COVID-19 may be due to an inflammatory process, hypoxia or GABAergic impairment. Most patients received treatment with antiepileptic or anti-inflammatory agents and improved clinically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.