Metal-semiconductor field-effect transistors (MESFETs) are widely known from opaque high-speed GaAs or high-power SiC and GaN technology. For the emerging field of transparent electronics, only metal-insulator-semiconductor field-effect transistors (MISFETs) were considered so far. This article reviews the progress of high-performance MESFETs in oxide electronics and reflects the recent advances of this technique towards transparent MESFET circuitry. We discuss design prospects as well as limitations regarding device performance, reliability and stability. The presented ZnO-based MESFETs and inverters have superior properties compared to MISFETs, i.e., high channel mobilities and on/off-ratios, high gain, and low uncertainty level at comparatively low operating voltages. This makes them a promising approach for future low-cost transparent electronics.
Transparent conductive oxides (TCOs) are a well-known material class allowing Ohmic conduction. A large free carrier concentration in the 10 21 cm À3 range and high conductivity (beyond 10 4 S/cm) is feasible simultaneously with high transparency. Applications are manifold and include touch screens and front contacts for displays or solar cells. Transparent semiconducting oxides (TSO) are oxides with an intermediate free carrier concentration (typically 10 14 -10 18 cm À3 ) allowing the formation of depletion layers. We review recent results on TSO-based transistors and inverters. Most work has been reported on MISFETs. We show that MESFETs exhibit high performance and low voltage operation of oxide electronics. MESFET-based inverters offer superior performance compared to results reported for TSO MISFET-based circuits.Optical image of inverter based on thin film MESFETs with Mg 0.003 Zn 0.997 O channels (left) and experimental inverter characteristic for supply voltage of V DD ¼ þ2:0 V (right).
We have investigated the electrical properties of metal-semiconductor field-effect transistors (MESFET) based on amorphous oxide semiconductor channels. All functional parts of the devices were sputter-deposited at room temperature. The influence on the electrical properties of a 150 °C annealing step of the gallium-indium-zinc-oxide channel is investigated. The MESFET technology offers a simple route for processing of the transistors with excellent electrical properties such as low subthreshold swing of 112 mV/decade, gate sweep voltages of 2.5 V, and channel mobilities up to 15 cm2/V s.
Highly rectifying Ag, Au, Pd, and Pt Schottky contacts have been fabricated on heteroepitaxial pulsed-laser deposited ZnO-thin films by reactive sputtering. X-ray photoelectron spectroscopy revealed an oxidation of the Ag, Pd, and Pt contact material; the gold contacts are purely metallic. The necessity of a conductive capping of the oxidized contacts is proven by photocurrent measurements of AgxO contacts. The ideality factors and the effective barrier heights were determined by current-voltage measurements. Capacitance-voltage and temperature dependent current-voltage measurements were furthermore carried out to determine the mean barrier height, the standard deviation and the respective voltage dependencies taking lateral fluctuations of the barrier height into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.