SUMMARYThe boundary element method has been successfully applied in the past to the analysis of hydrodynamic forces in two-and three-dimensional finite water reservoirs subjected to seismic ground motions. In extending the method to an infinite reservoir, the loss of energy due to pressure waves moving away towards infinity must be taken into account. In addition, for both finite and infinite reservoirs, energy is lost owing to partial absorption of the waves incident on a flexible bottom consisting of alluvial deposits. This paper presents the results of more recent research on the application of the boundary element method to the analysis of 2D reservoir vibration. Two different formulations are used: a constant boundary element formulation and a linear boundary element formulation. Special boundary conditions to treat infinite radiation and foundation damping have been incorporated in both formulations. Numerical results have been obtained for each of the two alternative formulations and compared against each other as well as with classical solutions and results obtained by other researchers.
/npsi/ctrl?lang=en http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?lang=fr Access and use of this website and the material on it are subject to the Terms and Conditions set forth at http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=en
NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.Earthquake Engineering and Structural Dynamics, 19, 3, pp. 359-376, 1990-04 Three-dimensional boundary element reservoir model for seismic analysis of arch and gravity dams Jablonski, A. M.; Humar, J. L.
THREE-DIMENSIONAL BOUNDARY ELEMENT RESERVOIR MODEL FOR SEISMIC ANALYSIS OF ARCH AND GRAVITY DAMS
SUMMARYThe boundary element method has been successfully applied in the past to the analysis of hydrodynamic forces in twodimensional infinite as well as two-and three-dimensional finite reservoirs subjected to seismic ground motions. This paper presents the results of more recent research on the application of the constant boundary element method to the 3D analysis of reservoir vibration. Special boundary conditions, previously used in the 2D case, to treat infinite radiation damping and damping from foundation soil and banks have been incorporated in this formulation. Numerical results for vibration of a 3D infinite rectangular reservoir as well as of a 3D infinite reservoir impounded by an arch dam are presented and compared with some existing results obtained by other researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.