The superconducting transmon qubit is a leading platform for quantum computing and quantum science. Building large, useful quantum systems based on transmon qubits will require significant improvements in qubit relaxation and coherence times, which are orders of magnitude shorter than limits imposed by bulk properties of the constituent materials. This indicates that relaxation likely originates from uncontrolled surfaces, interfaces, and contaminants. Previous efforts to improve qubit lifetimes have focused primarily on designs that minimize contributions from surfaces. However, significant improvements in the lifetime of two-dimensional transmon qubits have remained elusive for several years. Here, we fabricate two-dimensional transmon qubits that have both lifetimes and coherence times with dynamical decoupling exceeding 0.3 milliseconds by replacing niobium with tantalum in the device. We have observed increased lifetimes for seventeen devices, indicating that these material improvements are robust, paving the way for higher gate fidelities in multi-qubit processors.
Despite mounting evidence that materials imperfections are a major obstacle to practical applications of superconducting qubits, connections between microscopic material properties and qubit coherence are poorly understood. Here, we combine measurements of transmon qubit relaxation times (T1) with spectroscopy and microscopy of the polycrystalline niobium films used in qubit fabrication. By comparing films deposited using three different techniques, we reveal correlations between T1 and intrinsic film properties such as grain size, enhanced oxygen diffusion along grain boundaries, and the concentration of suboxides near the surface. Qubit and resonator measurements show signatures of two-level system defects, which we propose to be hosted in the grain boundaries and surface oxides. We also show that the residual resistance ratio of the polycrystalline niobium films can be used as a figure of merit for qubit lifetime. This comprehensive approach to understanding qubit decoherence charts a pathway for materials-driven improvements of superconducting qubit performance.
Despite mounting evidence that materials imperfections are a major obstacle to practical applications of superconducting qubits, connections between microscopic material properties and qubit coherence are poorly understood. Here, we perform measurements of transmon qubit relaxation times T1 in parallel with spectroscopy and microscopy of the thin polycrystalline niobium films used in qubit fabrication. By comparing results for films deposited using three techniques, we reveal correlations between T1 and grain size, enhanced oxygen diffusion along grain boundaries, and the concentration of suboxides near the surface. Physical mechanisms connect these microscopic properties to residual surface resistance and T1 through losses arising from the grain boundaries and from defects in the suboxides. Further, experiments show that the residual resistance ratio can be used as a figure of merit for qubit lifetime. This comprehensive approach to understanding qubit decoherence charts a pathway for materials-driven improvements of superconducting qubit performance.
Superconducting qubits are a leading system for realizing large scale quantum processors, but overall gate fidelities suffer from coherence times limited by microwave dielectric loss. Recently discovered tantalum-based qubits exhibit record lifetimes exceeding 0.3 ms. Here we perform systematic, detailed measurements of superconducting tantalum resonators in order to disentangle sources of loss that limit state-of-the-art tantalum devices. By studying the dependence of loss on temperature, microwave photon number, and device geometry, we quantify materials-related losses and observe that the losses are dominated by several types of saturable two level systems (TLSs), with evidence that both surface and bulk related TLSs contribute to loss. Moreover, we show that surface TLSs can be altered with chemical processing. With four different surface conditions, we quantitatively extract the linear absorption associated with different surface TLS sources. Finally, we quantify the impact of the chemical processing at single photon powers, the relevant conditions for qubit device performance. In this regime we measure resonators with internal quality factors ranging from 5 to 15 × 10 6 , comparable to the best qubits reported. In these devices the surface and bulk TLS contributions to loss are comparable, showing that systematic improvements in materials on both fronts will be necessary to improve qubit coherence further.
Over the past decades, superconducting qubits have emerged as one of the leading hardware platforms for realizing a quantum processor. Consequently, researchers have made significant effort to understand the loss channels that limit the coherence times of superconducting qubits. A major source of loss has been attributed to two level systems that are present at the material interfaces. It is recently shown that replacing the metal in the capacitor of a transmon with tantalum yields record relaxation and coherence times for superconducting qubits, motivating a detailed study of the tantalum surface. In this work, the chemical profile of the surface of tantalum films grown on c‐plane sapphire using variable energy X‐ray photoelectron spectroscopy (VEXPS) is studied. The different oxidation states of tantalum that are present in the native oxide resulting from exposure to air are identified, and their distribution through the depth of the film is measured. Furthermore, it is shown how the volume and depth distribution of these tantalum oxidation states can be altered by various chemical treatments. Correlating these measurements with detailed measurements of quantum devices may elucidate the underlying microscopic sources of loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.