Axially doped p-i-n InAs0.93Sb0.07 nanowire arrays have been grown on Si substrates and fabricated into photodetectors for shortwave infrared detection. The devices exhibit a leakage current density around 2 mA/cm(2) and a 20% cutoff of 2.3 μm at 300 K. This record low leakage current density for InAsSb based devices demonstrates the suitability of nanowires for the integration of III-V semiconductors with silicon technology.
We explore how to configure an argon atmospheric-pressure plasma jet for enhancing its production of hydrogen peroxide (H2O2) in deionised water (DIW). The plasma jet consists of a quartz tube of 1.5 mm inner diameter and 3 mm outer diameter, with an upstream internal needle electrode (within the tube) and a downstream external cylindrical electrode (surrounding the tube). The plasma is operated by purging argon through the glass tube and applying a sinusoidal AC voltage to the internal needle electrode at 10 kV (peak–peak) with a frequency of 23.5 kHz. We study how the following operational parameters influence the production rate of H2O2 in water: tube length, inter-electrode separation distance, distance of the ground electrode from the tube orifice, distance between tube orifice and the DIW, argon flow rate and treatment time. By examining the electrical and optical properties of the plasma jet, we determine how the above operational parameters influence the major plasma processes that promote H2O2 generation through electron-induced dissociation reactions and UV photolysis within the plasma core and in the plasma afterglow; but with a caveat being that these processes are highly dependent on the water vapour content from the argon gas supply and ambient environment. We then demonstrate how the synergistic action between H2O2 and other plasma generated molecules at a plasma induced low pH in the DIW is highly effective at decontaminating common wound pathogens Gram-positive Staphylococus aureus and Gram-negative Pseudomonas aeruginosa. The information presented in this study is relevant in the design of medical plasma devices where production of plasma reactive species such as H2O2 at physiologically useful concentrations is needed to help realise the full clinical potential of the technology.
SummaryFluidity is essential for many biological membrane functions. The basis for understanding membrane structure remains the classic Singer-Nicolson model, in which proteins are embedded within a fluid lipid bilayer and able to diffuse laterally within a sea of lipid. Here we report lipid and protein diffusion in the plasma membrane of live cells of the bacterium Escherichia coli, using Fluorescence Recovery after Photobleaching (FRAP) and Total Internal Reflection Fluorescence (TIRF) microscopy to measure lateral diffusion coefficients. Lipid and protein mobility within the membrane were probed by visualizing an artificial fluorescent lipid and a simple model membrane protein consisting of a single membrane-spanning alpha-helix with a Green Fluorescent Protein (GFP) tag on the cytoplasmic side. The effective viscosity of the lipid bilayer is strongly temperature-dependent, as indicated by changes in the lipid diffusion coefficient. Surprisingly, the mobility of the model protein was unaffected by changes in the effective viscosity of the bulk lipid, and TIRF microscopy indicates that it clusters in segregated, mobile domains. We suggest that this segregation profoundly influences the physical behaviour of the protein in the membrane, with strong implications for bacterial membrane function and bacterial physiology.
Managing thermal transport in nanostructures became a major challenge in development of active microelectronic, optoelectronic and thermoelectric devices, stalling the famous Moore’s law of clock speed increase of microprocessors for...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.