Background: Cases of polydactyly in natural populations of amphibians have attracted great interest from biologists. At the end of the 1940s, the French biologist Jean Rostand discovered a polymorphic syndrome in some water frog (Anura: Pelophylax) populations that included polydactyly and some severe morphological anomalies (he called it 'anomaly P'). The cause of this anomaly remains unknown for 70 years. In a previous study, we obtained anomaly P in the laboratory in tadpoles of water frogs that developed together with molluscs Planorbarius corneus (Mollusca: Gastropoda) collected in the field. We thus proposed the 'trematode hypothesis' , according to which the infectious agent responsible for anomaly P is a trematode species. Methods: Metacercariae from tadpoles with anomaly P were identified using ITS2 gene sequencing as Strigea robusta (Trematoda: Strigeidae). To verify teratogenic features of the species, cercariae of S. robusta were tested for the possibility to cause anomalies. Identification of cercariae species was made using morphological and molecular methods (sequencing of ITS2 and 28S rRNA). The tadpoles were exposed to parasites at four doses of cercariae (control, low, medium and high) and divided into two groups: "early" (at 25-27 Gosner stages) and "late" (at 29-34 Gosner stages) exposure. Results: A total of 58 (72.5%) tadpoles survived until metamorphosis under the dose-dependent experiment with the trematode S. robusta. Differences in the survival rates were observed between the exposed and unexposed tadpoles both in the group of "early" tadpoles and "late" tadpoles. The exposure of tadpoles to the cercariae of S. robusta induced anomaly P in 82% of surviving tadpoles. The severe forms developed only in "early" stages under all doses of cercariae exposure. Polydactyly predominantly developed in the "late" stages; under a light exposure dose, polydactyly also developed in "early" tadpoles. Laboratory-hatched tadpoles reared together with infected snails had different rates of survival and complexity of deformations associated with the period of coexistence. Conclusions: The experiments with direct cercariae exposure provide compelling evidence that S. robusta leads to anomaly P in tadpoles of water frogs. The manifestation of anomaly P turned out to be dependent on the stage of development, cercariae dose, and the location of the cysts.
The “anomaly P” was described in Palearctic water frogs of the genus Pelophylax by Jean Rostand as complex morphological anomalies of water frogs, including polydactyly, brachymely, hind limb oedema, bone outgrowths, spikes, flexions and additional limbs in the inguinal region. In 2016, the anomaly P syndrome was rediscovered in central Russia, confirming the hypothesis concerning its wider distribution. Here, three new records of this syndrome in two species of western Palearctic water frog from Russia are described.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Here we present the first new data about the mysterious «anomaly P» of green frogs (genus Pelophylax) in about 50 years. We established that the gastropod Planorbarius corneus could be an intermediate host (or vector) of the infectious agent of the anomaly P. Symmetrical cases of polydactyly, the anomaly «cross» and heavy cases of the anomaly P, which were previously found in natural populations in the European part of Russia and recently obtained in laboratory, can be caused by this infectious agent. As the most probable cause, we assume a species of trematodes, for which the first intermediate host is P. corneus, from which they infest tadpoles of green frogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.