Voltage-gated sodium channels are protein complexes comprised of one pore forming α subunit and two, non-pore forming, β subunits. The voltage-gated sodium channel β subunits were originally identified to function as auxiliary subunits, which modulate the gating, kinetics, and localization of the ion channel pore. Since that time, the five β subunits have been shown to play crucial roles as multifunctional signaling molecules involved in cell adhesion, cell migration, neuronal pathfinding, fasciculation, and neurite outgrowth. Here, we provide an overview of the evidence implicating the β subunits in their conducting and non-conducting roles. Mutations in the β subunit genes (SCN1B-SCN4B) have been linked to a variety of diseases. These include cancer, epilepsy, cardiac arrhythmias, sudden infant death syndrome/sudden unexpected death in epilepsy, neuropathic pain, and multiple neurodegenerative disorders. β subunits thus provide novel therapeutic targets for future drug discovery.
Loss-of-function (LOF) variants in SCN1B, encoding voltage-gated sodium channel β1 subunits, are linked to human diseases with high risk of sudden death, including developmental and epileptic encephalopathy and cardiac arrhythmia. β1 Subunits modulate the cell-surface localization, gating, and kinetics of sodium channel pore-forming α subunits. They also participate in cell-cell and cell-matrix adhesion, resulting in intracellular signal transduction, promotion of cell migration, calcium handling, and regulation of cell morphology. Here, we investigated regulated intramembrane proteolysis (RIP) of β1 by BACE1 and γ-secretase and show that β1 subunits are substrates for sequential RIP by BACE1 and γ-secretase, resulting in the generation of a soluble intracellular domain (ICD) that is translocated to the nucleus. Using RNA sequencing, we identified a subset of genes that are downregulated by β1-ICD overexpression in heterologous cells but upregulated in Scn1b -null cardiac tissue, which lacks β1-ICD signaling, suggesting that the β1-ICD may normally function as a molecular brake on gene transcription in vivo. We propose that human disease variants resulting in SCN1B LOF cause transcriptional dysregulation that contributes to altered excitability. Moreover, these results provide important insights into the mechanism of SCN1B -linked channelopathies, adding RIP-excitation coupling to the multifunctionality of sodium channel β1 subunits.
ObjectivePatients with Early Infantile Epileptic Encephalopathy (EIEE) 52 have inherited, homozygous variants in the gene SCN1B, encoding the voltage‐gated sodium channel (VGSC) β1 and β1B non‐pore‐forming subunits.MethodsHere, we describe the detailed electroclinical features of a biallelic SCN1B patient with a previously unreported variant, p.Arg85Cys.ResultsThe female proband showed hypotonia from birth, multifocal myoclonus at 2.5 months, then focal seizures and myoclonic status epilepticus (SE) at 3 months, triggered by fever. Auditory brainstem response (ABR) showed bilateral hearing loss. Epilepsy was refractory and the patient had virtually no development. Administration of fenfluramine resulted in a significant reduction in seizure frequency and resolution of SE episodes that persisted after a 2‐year follow‐up. The patient phenotype is more compatible with early infantile developmental and epileptic encephalopathy (DEE) than with typical Dravet syndrome (DS), as previously diagnosed for other patients with homozygous SCN1B variants. Biochemical and electrophysiological analyses of the SCN1B variant expressed in heterologous cells showed cell surface expression of the mutant β1 subunit, similar to wild‐type (WT), but with loss of normal β1‐mediated modification of human Nav1.1‐generated sodium current, suggesting that SCN1B‐p.Arg85Cys is a loss‐of‐function (LOF) variant.InterpretationImportantly, a review of the literature in light of our results suggests that the term, early infantile developmental and epileptic encephalopathy, is more appropriate than either EIEE or DS to describe biallelic SCN1B patients.
Acinetobacter baumannii is a multidrug resistant pathogen that infects more than 12 000 patients each year in the US. Much of the resistance to β-lactam antibiotics in Acinetobacter spp. is mediated by class C β-lactamases known as Acinetobacter-derived cephalosporinases (ADCs). ADCs are unaffected by clinically used β-lactam-based β-lactamase inhibitors. In this study, five boronic acid transition state analog inhibitors (BATSIs) were evaluated for inhibition of the class C cephalosporinase ADC-7. Our goal was to explore the properties of BATSIs designed to probe the R1 binding site. Ki values ranged from low micromolar to subnanomolar, and circular dichroism (CD) demonstrated that each inhibitor stabilizes the β-lactamase–inhibitor complexes. Additionally, X-ray crystal structures of ADC-7 in complex with five inhibitors were determined (resolutions from 1.80 to 2.09 Å). In the ADC-7/CR192 complex, the BATSI with the lowest Ki (0.45 nM) and greatest ΔTm (+9 °C), a trifluoromethyl substituent, interacts with Arg340. Arg340 is unique to ADCs and may play an important role in the inhibition of ADC-7. The ADC-7/BATSI complexes determined in this study shed light into the unique recognition sites in ADC enzymes and also offer insight into further structure-based optimization of these inhibitors.
Boronic acids are attracting a lot of attention as β-lactamase inhibitors, and in particular, compound S02030 (Ki = 44 nM) proved to be a good lead compound against ADC-7 (Acinetobacter-derived cephalosporinase), one of the most significant resistance determinants in A. baumannii. The atomic structure of the ADC-7/S02030 complex highlighted the importance of critical structural determinants for recognition of the boronic acids. Herein, to elucidate the role in recognition of the R2-carboxylate, which mimics the C3/C4 found in β-lactams, we designed, synthesized, and characterized six derivatives of S02030 (3a). Out of the six compounds, the best inhibitors proved to be those with an explicit negative charge (compounds 3a–c, 3h, and 3j, Ki = 44–115 nM), which is in contrast to the derivatives where the negative charge is omitted, such as the amide derivative 3d (Ki = 224 nM) and the hydroxyamide derivative 3e (Ki = 155 nM). To develop a structural characterization of inhibitor binding in the active site, the X-ray crystal structures of ADC-7 in a complex with compounds 3c, SM23, and EC04 were determined. All three compounds share the same structural features as in S02030 but only differ in the carboxy-R2 side chain, thereby providing the opportunity of exploring the distinct binding mode of the negatively charged R2 side chain. This cephalosporinase demonstrates a high degree of versatility in recognition, employing different residues to directly interact with the carboxylate, thus suggesting the existence of a “carboxylate binding region” rather than a binding site in ADC enzymes. Furthermore, this class of compounds was tested against resistant clinical strains of A. baumannii and are effective at inhibiting bacterial growth in conjunction with a β-lactam antibiotic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.