Xyloglucan endo-transglycosylases (XETs) encoded by xyloglucan endo-transglycosylases/hydrolase (XTH) genes modify the xyloglucan-cellulose framework of plant cell walls, thereby regulating their expansion and strength. To evaluate the importance of XET in wood development, we studied xyloglucan dynamics and XTH gene expression in developing wood and modified XET activity in hybrid aspen (Populus tremula × tremuloides) by overexpressing PtxtXET16-34. We show that developmental modifications during xylem differentiation include changes from loosely to tightly bound forms of xyloglucan and increases in the abundance of fucosylated xyloglucan epitope recognized by the CCRC-M1 antibody. We found that at least 16 Populus XTH genes, all likely encoding XETs, are expressed in developing wood. Five genes were highly and ubiquitously expressed, whereas PtxtXET16-34 was expressed more weakly but specifically in developing wood. Transgenic up-regulation of XET activity induced changes in cell wall xyloglucan, but its effects were dependent on developmental stage. For instance, XET overexpression increased abundance of the CCRC-M1 epitope in cambial cells and xylem cells in early stages of differentiation but not in mature xylem. Correspondingly, an increase in tightly bound xyloglucan content was observed in primary-walled xylem but a decrease was seen in secondary-walled xylem. Thus, in young xylem cells, XET activity limits xyloglucan incorporation into the tightly bound wall network but removes it from cell walls in older cells. XET overexpression promoted vessel element growth but not fiber expansion. We suggest that the amount of nascent xyloglucan relative to XET is an important determinant of whether XET strengthens or loosens the cell wall.
O-Acetyl-galactoglucomannan (AcGGM) is the major soft-wood hemicellulose. Structurally modified AcGGM and hydrogels of AcGGM were prepared. The degree of substitution (DS) of AcGGM was modified enzymatically with alpha-galactosidase, and chemically with an acrylate derivative, 2-hydroxyethylmethacrylate (HEMA). The hydrolysis of AcGGM with beta-mannanase was shown to increase with decreasing DS. AcGGM hydrogels were prepared from chemically modified AcGGM with varying DS of HEMA. Bovine serum albumin (BSA) was encapsulated in hydrogels. A spontaneous burst release of BSA was decreased with increased DS of HEMA. The addition of beta-mannanase significantly enhanced the BSA release from hydrogels with a DS of 0.36, reaching a maximum of 95% released BSA after eight hours compared to 60% without enzyme. Thus, both the pendant group composition and the enzyme action are valuable tools in the tailoring of hydrogel release profiles of potential interest for intestine drug delivery.
To try to improve hydrolysis yields at elevated solids loadings, a comparison was made between batch and fed-batch addition of fresh substrate at the initial and later phases of hydrolysis. Both ethanol (EPCS) and steam-pretreated corn stover (SPCS) substrates were tested at low (5 FPU) and high (60 FPU) loadings of cellulase per gram of cellulose. The fed-batch addition of fresh substrate resulted in a slight decrease in hydrolysis yields when compared with the corresponding batch reactions. A 72-h hydrolysis of the SPCS substrate resulted in a hydrolysis yield of 66% compared with 51% for the EPCS substrate. When the enzyme adsorption and substrate characteristics were assessed during batch and fed-batch hydrolysis, it appeared that the irreversible binding of cellulases to the more recalcitrant original substrate limited their access to the freshly added substrate. After 72-h hydrolysis of the SPCS substrate at low enzyme loadings, ∼40-50% of the added cellulases were desorbed into solution, whereas only 20% of the added enzyme was released from the EPCS substrate. Both simultaneous and sequential treatments with xylanases and cellulases resulted in an up to a 20% increase in hydrolysis yields for both substrates at low enzyme loading. Simons' stain measurements indicated that xylanase treatment increased cellulose access, thus facilitating cellulose hydrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.