N-type calcium channels are essential mediators of spinal nociceptive transmission. The core subunit of the N-type channel is encoded by a single gene, and multiple N-type channel isoforms can be generated by alternate splicing. In particular, cell-specific inclusion of an alternatively spliced exon 37a generates a novel form of the N-type channel that is highly enriched in nociceptive neurons and, as we show here, downregulated in a neuropathic pain model. Splice isoform-specific small interfering RNA silencing in vivo reveals that channels containing exon 37a are specifically required for mediating basal thermal nociception and for developing thermal and mechanical hyperalgesia during inflammatory and neuropathic pain. In contrast, both N-type channel isoforms (e37a-and e37b-containing) contribute to tactile neuropathic allodynia. Hence, exon 37a acts as a molecular switch that tailors the channels toward specific roles in pain.
Dopamine signaling through D1 receptors in the prefrontal cortex (PFC) plays a critical role in the maintenance of higher cognitive functions, such as working memory. At the cellular level, these functions are predicated to involve alterations in neuronal calcium levels. The dendrites of PFC neurons express D1 receptors and N-type calcium channels, yet little information exists regarding their coupling. Here, we show that D1 receptors potently inhibit N-type channels in dendrites of rat PFC neurons. Using coimmunoprecipitation, we demonstrate the existence of a D1 receptor-N-type channel signaling complex in this region, and we provide evidence for a direct receptor-channel interaction. Finally, we demonstrate the importance of this complex to receptor-channel colocalization in heterologous systems and in PFC neurons. Our data indicate that the N-type calcium channel is an important physiological target of D1 receptors and reveal a mechanism for D1 receptor-mediated regulation of cognitive function in the PFC.
N-type channels are located on dendrites and at pre-synaptic nerve terminals where they play a fundamental role in neurotransmitter release. They are potently regulated by the activation of a number of different types of pertussis toxin (PTX)-sensitive G alpha(i/o) coupled receptors, which results in voltage-dependent inhibition of channel activity via G betagamma subunits. Using heterologous expression in HEK 293T cells, we show via whole cell patch clamp recordings that D2 receptors mediate both G betagamma (i.e., voltage-dependent) and voltage-independent inhibition of channel activity. Furthermore, using co-immunoprecipitation and pull down assays involving the intracellular regions of each protein, we show that D2 receptors and N-type channels form physical signaling complexes. Finally, we use confocal microscopy to demonstrate that D2 receptors regulate N-type channel trafficking to affect the number of calcium channels available at the plasma membrane. Taken together, these data provide evidence for multiple voltage-dependent and voltage-independent mechanisms by which D2 receptor subtypes influence N-type channel activity.
Both anaemia and blood transfusion are associated with poor outcomes in the neurosurgical population. Based on the available literature, the optimal haemoglobin concentration for neurologically injured patients appears to be in the range of 9.0-10.0 g dl, although the individual risks and benefits should be weighed. Several perioperative blood conservation strategies have been used successfully in neurosurgery, including correction of anaemia and coagulopathy, use of antifibrinolytics, and intraoperative cell salvage. Avoidance of non-steroidal anti-inflammatory drugs and starch-containing solutions is recommended given the potential for platelet dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.