Natural polymers can themselves be efficient as materials with biosorptive properties but can also be used to transform microbial biomass into an easy-to-handle form, respectively, into biosorbents, through immobilization. The article aims to study biosorbents based on residual microbial biomass (Saccharomyces pastorianus yeast, separated after the brewing process by centrifugation and dried at 80 °C) immobilized in sodium alginate. The biosorptive properties of this type of biosorbent (spherical particles 2 and 4 mm in diameter) were studied for removal of reactive dye Brilliant Red HE-3B (with concentration in range of 16.88–174.08 mg/L) from aqueous media. The paper aims at three aspects: (i) the physico-chemical characterization of the biosorbent (Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX) and Fourier Transform Infrared (FTIR) spectra); (ii) the modeling of biosorption data in order to calculate the quantitative characteristic parameters using three equilibrium isotherms (Langmuir, Freundlich, and Dubinin–Radushkevich—DR); and (iii) the evaluation of thermal effect and the possible mechanism of action. The results of the study showed that biosorption capacity evaluated by Langmuir (I) model is 222.22 mg/g (ϕ = 2 mm) and 151.51 mg/g (ϕ = 4 mm) at 30 °C, and the free energy of biosorption (E) is in the range of 8.45–13.608 KJ/mol (from the DR equation). The values of thermodynamic parameters suggested an exothermic process due the negative value of free Gibbs energy (ΔG0 = −9.031 kJ/mol till −3.776 kJ/mol) and enthalpy (about ΔH0 = −87.795 KJ/mol). The obtained results underline our finding that the immobilization in sodium alginate of the residual microbial biomass of Saccharomyces pastorianus led to an efficient biosorbent useful in static operating system in the case of effluents with moderate concentrations of organic dyes.
The use of a biosorbent based on residual biomass from brewing industry (Saccharomyces pastorianus) immobilized in a natural biopolymer (sodium alginate) was investigated for Methylene Blue removal from aqueous medium. Saccharomyces pastorianus, immobilized by a simple entrapment technique and by microencapsulation in alginate was characterized using SEM, EDAX, pHPZC and the biosorption behavior toward organic pollutant, such as cationic dye. The biosorption experiments were studied by assessing, in a first stage, the influence of the most important operational physical parameters on the efficiency of the biosorbent: the initial concentration of the dye, the contact time between phases, the temperature, the dye solution pH, the biosorbent granule size, and the amount of biosorbent. The highest sorption capacity was obtained for the biosorbent obtained by microencapsulation, at pH 9, at biosorbent dose of 5.28 g/L and a contact time of about 100 min. The biosorption equilibrium was then studied by modeling the data on the Langmuir, Freundlich and Dubinin- Radushkevich isotherms. The Langmuir model is best suited for experimental data on both particle sizes leading to a maximum biosorption capacity of 188.679 mg/g at room temperature. The values of the adsorption energy, E, obtained with the help of the Dubinin-Radushkevich model-suggest that the type of mechanism (physical or chemical) involved in the biosorption process depends on the particle size of the biosorbent. The results confirm that the residual microbial biomass of Saccharomyces pastorianus immobilized in a polymeric matrix such as sodium alginate, can be considered an efficient biosorbent in retaining cationic organic dyes present in aqueous solutions in moderate concentrations.
The aim of this study was to use plant extracts from spontaneous flora of Moldova (Rediu-Iasi area, Romania) as polyphenols and flavonoids source in order to obtain new dermato-cosmetic formulas to prevent the actions of oxidative stress on skin. Plant extracts (from raw and dried Galium verum sp.) were obtained by: cold classical maceration (M), heat reflux extraction (HTE) and ultrasound assisted extraction (UAE). The extracts were characterized by spectrophotometric method (for polyphenols and flavonoids content and for DPPH antioxidant activity evaluation). In order to evaluate the combating and/or attenuating effects of oxidative stress on skin, the study was continued with the elaboration of emulsions that incorporate one of these extracts. The emulsions were preliminarily characterized by determining the stability over time. The obtained results encourage research in the direction of deeper characterization of these emulsions to determine the microbiological stability and dermatological tests performed on the skin treated with these new products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.