Climate change and natural disasters caused by hydrological, meteorological, and climatic causes have a significant and increasing direct and indirect impact on human health, leading to increased mortality and morbidity. Russia is a country that suffers from frequent climatic and weather disasters. This is mainly due to its vast territory, complex geographical and ecological environment, and widely varying climatic conditions. This review provides information on climatological and hydrological extremes in Russia in 2010–2020, floods and droughts, and their impact on the health and well-being of the country’s population. A literature search was conducted using electronic databases Web of Science, Pubmed, Science Direct, Scopus, and e-Library, focusing on peer-reviewed journal articles published in English and in Russian from 2010 to 2021. Four conceptual categories were used: “floods”, “droughts”, “human health”, and “Russia”. It is concluded that while most hazardous weather events cannot be completely avoided, many health impacts can potentially be prevented. The recommended measures include early warning systems and public health preparedness and response measures, building climate resilient health systems and other management structures.
Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.