The influence of complex thermo-mechanical processing (TMP) on the mechanical properties of a Ti-Nb-Zr-Fe-O bio-alloy was investigated in this study. The proposed TMP program involves a schema featuring a series of severe plastic deformation (SPD) and solution treatment (STs). The purpose of this study was to find the proper parameter combination for the applied TMP and thus enhance the mechanical strength and diminish the Young’s modulus. The proposed chemical composition of the studied β-type Ti-alloy was conceived from already-appreciated Ti-Nb-Ta-Zr alloys with high β-stability by replacing the expensive Ta with more accessible Fe and O. These chemical additions are expected to better enhance β-stability and thus avoid the generation of ω, α’, and α” during complex TMP, as well as allow for the processing of a single bcc β-phase with significant grain diminution, increased mechanical strength, and a low elasticity value/Young’s modulus. The proposed TMP program considers two research directions of TMP experiments. For comparisons using structural and mechanical perspectives, the two categories of the experimental samples were analyzed using SEM microscopy and a series of tensile tests. The comparison also included some already published results for similar alloys. The analysis revealed the advantages and disadvantages for all compared categories, with the conclusions highlighting that the studied alloys are suitable for expanding the database of possible β-Ti bio-alloys that could be used depending on the specific requirements of different biomedical implant applications.
The present paper analyzed the microstructural characteristics and the mechanical properties of a Ti–Nb–Zr–Fe–O alloy of β-Ti type obtained by combining severe plastic deformation (SPD), for which the total reduction was of εtot = 90%, with two variants of super-transus solution treatment (ST). The objective was to obtain a low Young’s modulus with sufficient high strength in purpose to use the alloy as a biomaterial for orthopedic implants. The microstructure analysis was conducted through X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) investigations. The analyzed mechanical properties reveal promising values for yield strength (YS) and ultimate tensile strength (UTS) of about 770 and 1100 MPa, respectively, with a low value of Young’s modulus of about 48–49 GPa. The conclusion is that satisfactory mechanical properties for this type of alloy can be obtained if considering a proper combination of SPD + ST parameters and a suitable content of β-stabilizing alloying elements, especially the Zr/Nb ratio.
In this work, severe plastic deformation (SPD) of the newly designed Ti-Nb-Zr-Ta-Fe-O GUM metal was successfully conducted at room temperature using high speed high pressure torsion (HSHPT) followed by cold rolling (CR) to exploit the suitability of the processed alloy for bone staples. The Ti-31.5Nb-3.1Zr-3.1Ta-0.9Fe-0.16O GUM alloy was fabricated in a levitation melting furnace using a cold crucible and argon protective atmosphere. The as-cast specimens were subjected to SPD, specifically HSHPT, and then processed by the CR method to take the advantages of both grain refinement and larger dimensions. This approach creates the opportunity to obtain temporary orthopedic implants nanostructured by SPD. The changes induced by HSHPT technology from the coarse dendrite directly into the ultrafine grained structure were examined by optical microscopy, scanning electron microscopy and X-ray diffraction. The structural investigations showed that by increasing the deformation, a high density of grain boundaries is accumulated, leading gradually to fine grain size. In addition, the in vitro biocompatibility studies were conducted in parallel on the GUM alloy specimens in the as-cast state, and after HSHPT- and HSHPT+CR- processing. For comparative purposes, in vitro behavior of the bone-derived MC3T3-E1 cells on the commercially pure titanium has also been investigated regarding the viability and proliferation, morphology and osteogenic differentiation. The results obtained support the appropriateness of the HSHPT technology for developing compression staples able to ensure a better fixation of bone fragments.
In this study, a Ti-32.9Nb-4.2Zr-7.5Ta (wt%) titanium alloy was produced by melting in a cold crucible induction in a levitation furnace, and then deforming by cold rolling, with progressive deformation degrees (thickness reduction), from 15% to 60%, in 15% increments. The microstructural characteristics of the specimens in as-received and cold-rolled conditions were determined by XRD and SEM microscopy, while the mechanical characteristics were obtained by tensile and microhardness testing. It was concluded that, in all cases, the Ti-32.9Nb-4.2Zr-7.5Ta (wt%) showed a bimodal microstructure consisting of Ti-β and Ti-α″ phases. Cold deformation induced significant changes in the microstructural and the mechanical properties, leading to grain-refinement, crystalline cell distortions and variations in the weight-fraction ratio of both Ti-β and Ti-α″ phases, as the applied degree of deformation increased from 15% to 60%. Changes in the mechanical properties were also observed: the strength properties (ultimate tensile strength, yield strength and microhardness) increased, while the ductility properties (fracture strain and elastic modulus) decreased, as a result of variations in the weight-fraction ratio, the crystallite size and the strain hardening induced by the progressive cold deformation in the Ti-β and Ti-α″ phases.
One of the most important requirements for a metallic biomaterial is the mechanical biocompatibility, which means excellent mechanical properties—high strength and fatigue strength, but low elastic modulus, to be mechanically harmonized with hard tissues. In order to improve the mechanical and biocompatible performance of the Ti-25.5Nb-4.5Ta-8.0Zr wt% alloy, the influence of cold plastic deformation and solution treatment on its properties were investigated. The Ti-25.5Nb-4.5Ta-8.0Zr wt% alloy was fabricated by melting in a cold crucible furnace (in levitation) and then subjected to several treatment schemes, which include cold rolling and different solution treatments. Microstructural and mechanical characteristics of specimens in as-cast and thermo-mechanically processed condition were determined by SEM microscopy and tensile testing, for different structural states: initial as-cast/as-received, cold rolled and solution treated at different temperatures (800, 900, and 1000 °C) and durations (5, 10, 15, and 20 min), with water quenching. It was concluded that both cold rolling and solution treatment have important positive effects on structural and mechanical properties of the biomaterial, increasing mechanical strength and decreasing the elastic modulus. Samples in different structural states were also corrosion tested and the results provided important information on determining the optimal processing scheme to obtain a high-performance biomaterial. The final processing route chosen consists of a cold rolling deformation with a total deformation degree of 60%, followed by a solution heat treatment at 900 °C with maintenance duration of 5 min and water quenching. By applying this thermo-mechanical processing scheme, the Ti-25.5Nb-4.5Ta-8.0Zr wt% alloy showed an elastic modulus of 56 GPa (5% higher than in the as-cast state), an ultimate tensile strength of 1004 MPa (41.8% higher than in the as-cast state), a yield strength of 718 MPa (40.6% higher than in the as-cast state), and increased corrosion resistance (the corrosion rate decreased by 50% compared to the as-cast state).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.