The two-wave-plate compensator (TWC) method is expanded for full-field retardation measurements by use of a polarization microscope. The sample image is projected onto a CCD camera connected to a computer, allowing the retardation to be measured at all pixels. The retardation accuracy of this implementation of the TWC is evaluated to be 0.06 nm. The method is applied to polarization-maintaining fibers and long-period fiber gratings. The measured retardation is in good agreement with the crossed-polarizer images of the fibers. The method achieves a spatial resolution of 0.45 microm and a retardation resolution of 0.07 nm. The full-field TWC method can thus be a useful tool for characterizing and monitoring the fabrication of optical devices.
Three algorithms for computing the refractive-index profile of azimuthally symmetric optical fibers via the inverse Abel transform are compared to determine their relative accuracies. Appropriate values of algorithm parameters are also determined. The direct differentiation algorithm, the iterative algorithm, and the Fourier algorithm are used to calculate the refractive-index profile from simulated measurements of the phase shift of light transmitted transversely through the fiber. The rms error in the calculated index profile is used to quantify the accuracy of each algorithm. The Fourier algorithm is typically the most accurate of the three.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.