The health of the components that make up the cables of power lines, and hence their service life, is governed at the micro level by changes in their structure and microstructure. In this paper, the structure and microstructure of aluminum wires of overhead power transmission lines (without a steel core) of different service life from 0 to 62 years have been investigated by quantitative techniques of X-ray diffraction, diffraction of back-scattered electrons, and the densitometric method. Elastoplastic properties of the wires have been tested by the acoustic-resonance method. A decrease in the Al material density Δρ/ρ∼−0.165% was found in the near-surface layer of ∼36 μm depth and in the bulk of the wires with an increase in the service life from 0 to 18 years. The density decrease is associated with the accumulation of microcracks. The following density increase (Δρ/ρ∼−0.06%) in wires with a service life of 62 years is attributed to the formation of ∼0.7 vol.% of crystalline Al oxides in the near-surface layers of the wires. The nature of the change in the elastic modulus, microplastic flow stress, and decrement indicates complex structural changes correlating with the results obtained by diffraction methods.
In this paper, we propose a fast and simple approach for the fabrication of the electrocatalytically active ruthenium-containing microstructures using a laser-induced metal deposition technique. The results of scanning electron microscopy and electrical impedance spectroscopy (EIS) demonstrate that the fabricated ruthenium-based microelectrode had a highly developed surface composed of 10 μm pores and 10 nm zigzag cracks. The fabricated material exhibited excellent electrochemical properties toward non-enzymatic dopamine sensing, including high sensitivity (858.5 and 509.1 μA mM−1 cm−2), a low detection limit (0.13 and 0.15 μM), as well as good selectivity and stability.
The main component of connective tissue and human organs — collagen protein is widely used in tissue engineering, regenerative medicine and cosmetology. The new methods search for assessing the structural and qualitative characteristics of collagen is currently an urgent area. This research is devoted to analyze by FTIR spectroscopy the various structural forms of collagen during the transition from molecular to fibrillar form and also collagen fibrils destruction.
It was shown that during the formation of fibrils in the IR spectra, a peak arise with a wavenumber of 1083 cm−1. The magnitude of this peak can be used to judge the degree of fibrillation of molecular collagen in vitro. It was shown that the addition of a hydrogen peroxide solution with concentrations of 0.6, 1.5, and 3% in the initial solution with fibrillar collagen leads to the destruction of fibrils, which manifests itself in a noticeable fading of the peak with a wavenumber of 1083 cm−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.