Extracting population-wise information from medical images, specifically in the neurological domain, is crucial to better understanding disease processes and progression. This is frequently done in a whole-brain voxel-wise manner, in which a population of patients and healthy controls are registered to a common co-ordinate space and a statistical test is performed on the distribution of image intensities for each location. Although this method has yielded a number of scientific insights, it is further from clinical applicability as the differences are often small and altogether do not permit for a performant classifier. In this paper, we take the opposite approach of using a performant classifier, specifically a traditional convolutional neural network, and then extracting insights from it which can be applied in a population-wise manner, a method we call voxel-based diktiometry. We have applied this method to diffusion tensor imaging (DTI) analysis for Parkinson’s Disease, using the Parkinson’s Progression Markers Initiative (PPMI) database. By using the network sensitivity information, we can decompose what elements of the DTI contribute the most to the network’s performance, drawing conclusions about diffusion biomarkers for Parkinson’s disease that are based on metrics which are not readily expressed in the voxel-wise approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.