Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) are
important regulators of immune responses in cancer and have been directly
implicated in promotion of tumor progression. However, the heterogeneity of
these cells and lack of distinct markers hampers the progress in understanding
of the biology and clinical importance of these cells. Using partial enrichment
of PMN-MDSC with gradient centrifugation we determined that low density PMN-MDSC
and high density neutrophils from the same cancer patients had a distinct gene
profile. Most prominent changes were observed in the expression of genes
associated with endoplasmic reticulum (ER) stress. Surprisingly, low-density
lipoprotein (LDL) was one of the most increased regulators and its receptor
oxidized LDL receptor 1 OLR1 was one of the most overexpressed
genes in PMN-MDSC. Lectin-type oxidized LDL receptor 1 (LOX-1) encoded by
OLR1 was practically undetectable in neutrophils in
peripheral blood of healthy donors, whereas 5–15% of total
neutrophils in cancer patients and 15–50% of neutrophils in
tumor tissues were LOX-1+. In contrast to their
LOX-1− counterparts, LOX-1+ neutrophils had
gene signature, potent immune suppressive activity, up-regulation of ER stress,
and other biochemical characteristics of PMN-MDSC. Moreover, induction of ER
stress in neutrophils from healthy donors up-regulated LOX-1 expression and
converted these cells to suppressive PMN-MDSC. Thus, we identified a specific
marker of human PMN-MDSC associated with ER stress and lipid metabolism, which
provides new insight to the biology and potential therapeutic targeting of these
cells.
Despite recent therapeutic advances, multiple myeloma (MM) remains largely incurable. Herein we report results of a phase I/II trial to evaluate the safety and activity of autologous T-cells engineered to express an affinity-enhanced T-cell receptor (TCR) recognizing a naturally processed peptide shared by the cancer-testis antigens NY-ESO-1 and LAGE-1. Twenty patients with antigen-positive MM received an average 2.4×109 engineered T cells two days after autologous stem cell transplant (ASCT). Infusions were well-tolerated without clinically apparent cytokine release syndrome, despite high IL-6 levels. Engineered T-cells expanded, persisted, trafficked to marrow and exhibited a cytotoxic phenotype. Persistence of engineered T cells in blood was inversely associated with NY-ESO-1 levels in the marrow. Disease progression was associated with loss of T cell persistence or antigen escape, consistent with the expected mechanism of action of the transferred T cells. Encouraging clinical responses were observed in 16 of 20 patients (80%) with advanced disease, with a median progression free survival of 19.1 months. NY-ESO-1/LAGE-1 TCR-engineered T-cells were safe, trafficked to marrow and showed extended persistence that correlated with clinical activity against antigen-positive myeloma.
Innate immune cells can constitute a substantial proportion of the cells within the tumor microenvironment and have been associated with tumor malignancy in patients and animal models of cancer; however, the mechanisms by which they modulate cancer progression are incompletely understood. Here, we show that high levels of cathepsin protease activity are induced in the majority of macrophages in the microenvironment of pancreatic islet cancers, mammary tumors, and lung metastases during malignant progression. We further show that tumor-associated macrophage (TAM)-supplied cathepsins B and S are critical for promoting pancreatic tumor growth, angiogenesis, and invasion in vivo, and markedly enhance the invasiveness of cancer cells in culture. Finally, we demonstrate that interleukin-4 (IL-4) is responsible for inducing cathepsin activity in macrophages in vitro and in vivo. Together, these data establish IL-4 as an important regulator, and cathepsin proteases as critical mediators, of the cancer-promoting functions of TAMs.[Keywords: Tumor-associated macrophage; tumor microenvironment; cysteine cathepsin; protease; interleukin-4; invasion] Supplemental material is available at http://www.genesdev.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.