Abstract.New regional seismological data acquired in Colombia during 1993 to 1996 and tectonic field data from the Eastern Cordillera (
A compilation of more than one thousand stress indicators (which include in situ stress measurements, focal mechanisms, microtectonic and other geological data) allowed us to reconstruct the modern stress field in the Mediterranean region and the surrounding area. Average stress directions at different scales have been reconstructed by means of a linear interpolation method. This method takes into account the distribution, scale and quality of stress data. The results of the interpolation at plate scale, allow us to recognize slightly deformed regions such as the northwestern European platform, where average maximum horizontal stress direction is oriented roughly NNW-SSE, subparallel to absolute and relative plate velocity directions. Other regions such as the Caucasus, Alps and Pyrenees, where recent tectonic deformation and seismicity are present, display important variations of stress directions. The reconstruction of the average stress directions at different scales within the French Alps pointed out that the average stress field pattern may vary from one scale to another. Nevertheless, variations of stress directions at a given scale are consistent with the kinematics of faults of the same scale.
We investigate a class of granular materials characterized by the possibility of interlocking between the particles. The interlocking is modeled by its effect through rolling resistance depending on relative rotation and normal force at the contact points and involving a single parameter analogous to the sliding friction coefficient. The model, which is introduced in the framework of the contact dynamics method, is applied to simulate the simple shear of a large granular sample. We present a detailed analysis regarding the influence of rolling and sliding friction parameters on the macroscopic response in terms of shear strength, fabric properties, and force transmission. Interestingly, two distinct regimes can be distinguished in which the steady-state shear strength is controlled by either rolling resistance or sliding friction. The relative contributions of rolling and sliding contacts to the shear strength are consistent with the same two regimes. Interlocking strongly affects the force network by enhancing the arching effect and thus increasing the relative importance of weak contact forces and torques, which is reflected in a decreasing power-law probability distribution of the contact forces and torques below the mean. Due to the combined effect of friction and interlocking, the force-carrying backbone takes an increasingly columnar aspect involving a low fraction of particles. Our data suggest that the nature of the weak contact network is strongly affected by the formation of these columns of particles which do not need to be propped laterally. In particular, in the limit of high rolling resistance and sliding friction, the role of the weak network of contacts is no longer to prop the force chains, but, like the strong contact network, to actively sustain the deviatoric load imposed on the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.