This work examines the behavior of hybrid nanofluid flow toward a stagnation point on a stretching surface. Copper and aluminum are considered as the hybrid nanoparticles. The Casson (non-Newtonian) fluid model is considered for hybrid nanofluids applying magnetic effects perpendicular to the surface. The governing equations are reduced to the ordinary differential equations using similarity transformations. The resulting equations are programmed in the Mathematica software using the OHAM-BVPh 2.0 package. The most important results of this investigation are the effects of different physical parameters such as β, M, S, and Pr on the velocity profile, temperature profile, skin friction coefficient, and local Nusselt number. With the escalation of the magnitude of the Prandtl number Pr, the temperature profile slashes down, while with the variation of the Eckert number, the temperature field improves. The key outcomes specify that the hybrid Casson nanofluid has a larger thermal conductivity when equated with traditional fluids. Therefore, the hybrid fluid plays an important role in the enhancement of the heat phenomena. The ratification of our findings is also addressed via tables and attained noteworthy results.
This research paper explains the impact of dynamics viscosity of water base GO-EG/GO-W nanofluid over a stretching sheet. The impact of different parameter for velocity and temperature are displayed and discussed. The similarity transformation is used to convert the partial differential equation to nonlinear ordinary differential equation. The solution of the problem is obtained by using the optimal homotopy analysis method (OHAM). The BVPh 2.0 package function of Mathematica is used to obtain the numerical results. The result of important parameter such as magnetic parameter, Prandtl number, Eckert number, dynamic viscosity, nanoparticles volume fraction and unsteady parameter for both velocity and temperature profiles are plotted and discussed. The BVPh 2.0 package is used to obtain the convergences of the problem up to 25 iteration. The skin friction coefficient and Nusselt number is explained in table form.
The unsteady flow of nanoliquid film over a flexible surface has been inspected. Water and ethylene glycol are used as the base liquids for the graphene oxide platelets. The comparison of two sorts of nanoliquids has been used for heat transfer enhancement applications. The thickness of the nanoliquid film is kept as a variable. The governing equations for the flow problem have been altered into the set of nonlinear differential equations. The BVP 2.0 package has been used for the solution of the problem. The sum of the square residual error has been calculated up to the 10th order approximations. It has been observed that the graphene oxide ethylene glycol based nanofluid (GO-EG) is more efficient for heat transfer enhancement as compared to the graphene oxide water based nanofluid (GO-W). The impact of the physical parameters has been plotted and discussed.
This paper analyses the two-dimensional unsteady and incompressible flow of a non-Newtonian hybrid nanofluid over a stretching surface. The nanofluid formulated in the present study is TiO2 + Ag + blood, and TiO2 + blood, where in this combination TiO2 + blood is the base fluid and TiO2 + Ag + blood represents the hybrid nanofluid. The aim of the present research work is to improve the heat transfer ratio because the heat transfer ratio of the hybrid nanofluid is higher than that of the base fluid. The novelty of the recent work is the approximate analytical analysis of the magnetohydrodynamics mixed non-Newtonian hybrid nanofluid over a stretching surface. This type of combination, where TiO2+blood is the base fluid and TiO2 + Ag + blood is the hybrid nanofluid, is studied for the first time in the literature. The fundamental partial differential equations are transformed to a set of nonlinear ordinary differential equations with the guide of some appropriate similarity transformations. The analytical approximate method, namely the optimal homotopy analysis method (OHAM), is used for the approximate analytical solution. The convergence of the OHAM for particular problems is also discussed. The impact of the magnetic parameter, dynamic viscosity parameter, stretching surface parameter and Prandtl number is interpreted through graphs. The skin friction coefficient and Nusselt number are explained in table form. The present work is found to be in very good agreement with those published earlier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.