Organosilica nanoparticles hold great promise for nanomedicine applications. These nanoparticles are synthesized from polytrialkoxysilylated precursors without any silica source. In this work we present two kinds of organosilica nanoparticles with either amine or ammonium walls constituting their structure. Both types of nanoparticles are very efficient for gemcitabine monophosphate delivery, a small hydrophilic anticancer drug whose encapsulation is still a challenge. The nanoparticles are endocytosed by MCF‐7 breast cancer cells as monitored by confocal microscopy. They are efficient and lead to 60% cancer cell death.
Mechanical and chemical stability of proton exchange membranes are crucial requirements for the development of fuel cells for durable energy conversion. To tackle this challenge, bi-functional nanoclays grafted with amino groups and with embedded radical scavengers, that is, CeO2 nanoparticles were incorporated into Aquivion® ionomer. The composite membranes presented high proton conductivity and increased stability to radical attack compared to non-modified Aquivion membranes, demonstrating the effectiveness of the approach based on radical scavenger immobilisation and release from clay nanocontainers.
The sol‐gel synthesis of hollow organosilica nanoparticles incorporating amino groups with uniform size are described. These nanoparticles were successfully prepared via a microemulsion method. Then, the hollow nanoparticles were loaded with gemcitabine hydrochloride or methotrexate and studied in MCF‐7 breast cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.