In recent years, applications of dielectrophoresis-based platforms have been recognized as effective and dependable approach to separate cells and bioparticles, suspended in different carrier fluids, based on particle size and electrical properties. In this study, a microfluidic device was fabricated by an unprecedented electrode pattern, and several experiments were performed to enrich samples including either of yeast, Escherichia coli, or latex particles. A chemical deposition-based method was employed for fabrication of microelectrodes, inducing nonuniform electric field required for dielectrophoresis-based separation. One major advantage of our employed method is low fabrication cost, in addition to its accuracy and operation at low voltages. The performance of the microfluidic device in enriching either of injected samples was studied using spectrophotometric techniques. The effects of experimentally controllable parameters (applied-voltage amplitude and frequency, and flow rate) were studied by changing a parameter while keeping the others constant. It became evident that all the aforementioned parameters had modulating impact on the performance of the microfluidic device. Furthermore, to investigate binary interactions among the parameters, response surface methodology was exploited, resulting in a second-order polynomial model for the performance of the device as a function of the parameters. The model was employed for finding the optimum values of the parameters at which the performance of the device is the highest. At optimum values for the experimentally controllable parameters, enrichment efficiencies of 87 ± 2, 82 ± 4, and 86 ± 3% for, respectively, yeast, E. coli, and latex particles were obtained experimentally, confirming the ability of the proposed method for biological and polymeric particles enrichment.
A telescoped approach was developed for the efficient synthesis of methoxybenzene through the generation of an unstable intermediate reagent, based on the Br−Li exchange reaction of p-bromoanisole and n-BuLi, followed by its reaction with water. In the first stage, p-methoxyphenyllithium was synthesized and consumed immediately in the second stage. For this purpose, an integrated glass microfluidic device was fabricated using laser ablation followed by the thermal fusion bonding method. The impact of various parameters, including solvent, reaction time, molar ratio, concentration of reagents, and flow rates were investigated to achieve the highest yield of the desired product, leading to an optimized condition for the synthetic approach. It was found that the yield varies significantly with change in solvent composition. While p-bromoanisole does not react with n-BuLi in pure n-hexane, the existence of a small amount of THF (or 2-MeTHF) in n-hexane facilitates pbromoanisole reaction with n-BuLi. Moreover, the reaction is complete within 1 s by the yield of 95% using the microfluidic device, whereas in a batch system, the best result is obtained in 1 min by the yield of 49%. In addition, the optimal molar ratio of n-BuLi to p-bromoanisole was found to be 1.2. Furthermore, the higher flow rates of the reagents result in a higher yield of the desired product. Finally, under the optimized condition, the generated p-methoxyphenyllithium, by the Br−Li exchange reaction of p-bromoanisole and n-BuLi, was reacted with various electrophiles using the microfluidic device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.