Abstract. How do species' traits help identify which species will respond most strongly to future climate change? We examine the relationship between species' traits and phenology in a well-established model system for climate change, the U.K. Butterfly Monitoring Scheme (UKBMS). Most resident U.K. butterfly species have significantly advanced their dates of first appearance during the past 30 years. We show that species with narrower larval diet breadth and more advanced overwintering stages have experienced relatively greater advances in their date of first appearance. In addition, species with smaller range sizes have experienced greater phenological advancement. Our results demonstrate that species' traits can be important predictors of responses to climate change, and they suggest that further investigation of the mechanisms by which these traits influence phenology may aid in understanding species' responses to current and future climate change.
The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the hazard presented by the chemical and the extent of exposure. However, many chemicals lack estimates of exposure intake, limiting the understanding of health risks. We aim to develop a rapid heuristic method to determine potential human exposure to chemicals for application to the thousands of chemicals with little or no exposure data. We used Bayesian methodology to infer ranges of exposure consistent with biomarkers identified in urine samples from the U.S. population by the National Health and Nutrition Examination Survey (NHANES). We performed linear regression on inferred exposure for demographic subsets of NHANES demarked by age, gender, and weight using chemical descriptors and use information from multiple databases and structure-based calculators. Five descriptors are capable of explaining roughly 50% of the variability in geometric means across 106 NHANES chemicals for all the demographic groups, including children aged 6-11. We use these descriptors to estimate human exposure to 7968 chemicals, the majority of which have no other quantitative exposure prediction. For thousands of chemicals with no other information, this approach allows forecasting of average exposure intake of environmental chemicals.
The United States Environmental Protection Agency (U.S. EPA) must characterize potential risks to human health and the environment associated with manufacture and use of thousands of chemicals. High-throughput screening (HTS) for biological activity allows the ToxCast research program to prioritize chemical inventories for potential hazard. Similar capabilities for estimating exposure potential would support rapid risk-based prioritization for chemicals with limited information; here, we propose a framework for high-throughput exposure assessment. To demonstrate application, an analysis was conducted that predicts human exposure potential for chemicals and estimates uncertainty in these predictions by comparison to biomonitoring data. We evaluated 1936 chemicals using far-field mass balance human exposure models (USEtox and RAIDAR) and an indicator for indoor and/or consumer use. These predictions were compared to exposures inferred by Bayesian analysis from urine concentrations for 82 chemicals reported in the National Health and Nutrition Examination Survey (NHANES). Joint regression on all factors provided a calibrated consensus prediction, the variance of which serves as an empirical determination of uncertainty for prioritization on absolute exposure potential. Information on use was found to be most predictive; generally, chemicals above the limit of detection in NHANES had consumer/indoor use. Coupled with hazard HTS, exposure HTS can place risk earlier in decision processes. High-priority chemicals become targets for further data collection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.