Ranaviruses are pathogens of ectothermic vertebrates, including amphibians. We reviewed patterns of host range and virulence of ranaviruses in the context of virus genotype and postulate that patterns reflect significant variation in the historical and current host range of three groups of Ranavirus: FV3-like, CMTV-like and ATV-like ranaviruses. Our synthesis supports previous hypotheses about host range and jumps: FV3s are amphibian specialists, while ATVs are predominantly fish specialists that switched once to caudate amphibians. The most recent common ancestor of CMTV-like ranaviruses and FV3-like forms appears to have infected amphibians but CMTV-like ranaviruses may circulate in both amphibian and fish communities independently. While these hypotheses are speculative, we hope that ongoing efforts to describe ranavirus genetics, increased surveillance of host species and targeted experimental assays of susceptibility to infection and/or disease will facilitate better tests of the importance of hypothetical evolutionary drivers of ranavirus virulence and host range.
Ranaviruses infect and have been associated with mass mortality events in fish, amphibians and reptiles and are capable of interclass transmission. Eastern water dragons (EWDs), a semi-aquatic squamate, have an overlapping distribution with several species shown to be susceptible to Bohle iridovirus (BIV). However, this species has not been previously investigated, and no known mass mortalities have occurred in wild populations. Here we report the experimental infection of juvenile EWDs with BIV to investigate a water-dwelling lizards' susceptibility to a ranaviral strain present in northern Queensland, Australia. Lizards were exposed via oral inoculation, intramuscular injection, or cohabitation with orally infected lizards. All exposure methods were effective in establishing an infection as demonstrated by skin lesions and pathological changes in the internal organs. Necrosis, haemorrhage and inflammation were observed histologically in the pancreas, liver, spleen, kidney and submucosa of the gastrointestinal tract of BIV-exposed lizards. Variably sized basophilic intracytoplasmic inclusion bodies were observed in the liver of 6/14 BIV-exposed lizards. Virus was isolated from the liver and kidney of all BIV-infected lizards and confirmed with quantitative PCR (qPCR). The outcome of this study demonstrates that juvenile EWDs are susceptible to BIV, thereby adding Australian lizards to the broad host range of ranaviruses. Furthermore, this study provides additional evidence of BIV's ability to infect different classes of ecothermic vertebrates.
Juvenile eastern water dragons (Intellagama lesueurii lesueurii) are highly susceptible to infection with Bohle iridovirus (BIV), a species of ranavirus first isolated from ornate burrowing frogs in Townsville, Australia. To investigate the progression of BIV infection in eastern water dragons, 11 captive-bred juveniles were orally inoculated with a dose of 10 4.33 TCID 50 and euthanized at 3, 6, 8, 10, 12, and 14 days postinfection (dpi). Viral DNA was detected via polymerase chain reaction (PCR) in the liver, kidney, and cloacal swabs at 3 dpi. Mild lymphocytic infiltration was observed in the submucosa and mucosa of the tongue and liver at 3 dpi. Immunohistochemistry (IHC) first identified viral antigen in foci of splenic necrosis and in hepatocytes with intracytoplasmic inclusion or rare single-cell necrosis at 6 dpi. By 14 dpi, positive IHC labeling was found in association with lesions in multiple tissues. Selected tissues from an individual euthanized at 14 dpi were probed using in situ hybridization (ISH). The ISH labeling matched the location and pattern detected by IHC. The progression of BIV infection in eastern water dragons, based on lesion severity and virus detection, appears to start in the spleen, followed by the liver, then other organs such as the kidney, pancreas, oral mucosa, and skin. The early detection of ranaviral DNA in cloacal swabs and liver and kidney tissue samples suggests these to be a reliable source of diagnostic samples in the early stage of disease before the appearance of clinical signs, as well as throughout the infection.
Freshwater turtles inhabit most rivers and creeks on the east coast of Australia, but some species are only found in specific catchments, which makes them vulnerable to extinction. During annual fieldtrips to Alligator Creek, North Queensland, the resident population of Myuchelys latisternum and Emydura macquarii krefftii in a natural pond, just outside Bowling Green National Park, have been surveyed for a number of years and demographic data recorded against tagged turtles. Rounded, cutaneous lesions on individual animals were first noted in August 2016, three years after the first survey of the population. Turtles living in the upstream sections of the creek were not affected. An initial investigation into the cause of the lesions ruled out pollutants and although the bacterial communities appeared to be different on turtles with lesions, a causative agent was not identified. Attempts to isolate virus in culture was not successful and specific PCRs for ranavirus, papillomavirus, adenovirus and herpesvirus did not identify their presence. Blood biochemical parameters, body condition and activity levels were not significantly different between affected turtles and those without lesions. The turtles in this pond were monitored regularly over the following three years with 249 M. latisternum and 192 E. m. krefftii captured, tagged and released. The prevalence of the lesions fluctuated with season from 0 to 77 and 68% respectively, but did not vary significantly between species or sex in adults. There was a tendency for larger animals to be more likely to have lesions. The position of the lesions on the turtles was mostly on dorsal surfaces, distally on the legs and proximal on the tales of males, indicating that the initial lesion may have been associated with a behaviourally induced trauma. Recaptured animals (n = 43) during this period, provided records of lesion progression over time and while some healed up between capture events, others persisted for up to 24 months. Some turtles were repeatedly captured without lesions. Intra-species aggression associated with seasonal behaviours could potentially be the primary cause of skin trauma, followed by a secondary invasion of an unusual pathogen present in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.